import os import gradio as gr import openai import requests ############################################################################## # 1. GPT 调用示例函数 ############################################################################## def generate_natural_language_description_gpt(tags, api_key, base_url=None, model="gpt-4"): """ 使用 OpenAI GPT 生成自然语言描述的示例函数。 """ if not api_key: return "Error: GPT API Key not provided." openai.api_key = api_key if base_url: openai.api_base = base_url # 将 dict 转成可读字符串 tag_descriptions = "\n".join([ f"{key}: {', '.join(value) if isinstance(value, list) else value}" for key, value in tags.items() if value ]) try: response = openai.ChatCompletion.create( model=model, messages=[ { "role": "system", "content": ( "You are a creative assistant that generates detailed and imaginative scene descriptions " "for AI generation prompts. Focus on the details provided and incorporate them into a " "cohesive narrative. Use at least three sentences but no more than five sentences." ), }, { "role": "user", "content": f"Here are the tags and details:\n{tag_descriptions}\nPlease generate a vivid, imaginative scene description.", }, ] ) return response.choices[0].message.content.strip() except Exception as e: return f"GPT generation failed. Error: {e}" ############################################################################## # 2. DeepSeek 调用示例函数 (真实请求) ############################################################################## def generate_natural_language_description_deepseek(tags, api_key, base_url=None): """ 使用 DeepSeek API 生成自然语言描述的真实示例函数。 假设 DeepSeek 文档里的生成接口是: POST https://api.deepseek.com/v1/generate Headers: {"Authorization": "Bearer "} Body(JSON): {"tags": {...}} 返回: {"success": true, "data": {"description": "..."}} """ if not api_key: return "Error: DeepSeek API Key not provided." # 如果有自定义 base_url 就用,没有就用假设的默认 url = base_url or "https://api.deepseek.com/v1/generate" try: headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" } payload = { "tags": tags # 具体字段要根据实际 DeepSeek 文档 } resp = requests.post(url, json=payload, headers=headers, timeout=30) if resp.status_code == 200: j = resp.json() if j.get("success"): # 假设描述存放在 data.description return j["data"].get("description", "No 'description' found in data.") else: return f"DeepSeek generation failed, success=false. {j}" else: return f"DeepSeek generation failed with status {resp.status_code}. {resp.text}" except Exception as e: return f"DeepSeek generation request error: {e}" ############################################################################## # 3. GPT 翻译函数 ############################################################################## def translate_text_with_gpt(text, target_language, api_key, base_url=None, model="gpt-4"): """ 使用 GPT 来进行翻译的简单示例。 """ if not api_key: return "Error: GPT Translation Key not provided." openai.api_key = api_key if base_url: openai.api_base = base_url try: system_prompt = f"You are a professional translator. Translate the following text to {target_language}:" response = openai.ChatCompletion.create( model=model, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": text}, ] ) return response.choices[0].message.content.strip() except Exception as e: return f"GPT translation failed. Error: {e}" ############################################################################## # 4. DeepSeek 翻译函数 (真实请求) ############################################################################## def translate_text_with_deepseek(text, target_language, api_key, base_url=None): """ 使用 DeepSeek 来进行翻译的真实示例函数。 假设 DeepSeek 文档里的翻译接口是: POST https://api.deepseek.com/v1/translate Headers: {"Authorization": "Bearer "} Body(JSON): {"text": "...", "target_language": "..."} 返回: {"success": true, "data": {"translated_text": "..."}} """ if not api_key: return "Error: DeepSeek Translation Key not provided." url = base_url or "https://api.deepseek.com/v1/translate" try: headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" } payload = { "text": text, "target_language": target_language } resp = requests.post(url, json=payload, headers=headers, timeout=30) if resp.status_code == 200: j = resp.json() if j.get("success"): # 假设翻译结果存放在 data.translated_text return j["data"].get("translated_text", "No 'translated_text' found in data.") else: return f"DeepSeek translation failed, success=false. {j}" else: return f"DeepSeek translation failed with status {resp.status_code}. {resp.text}" except Exception as e: return f"DeepSeek translation request error: {e}" ############################################################################## # 5. 根据用户选择进行提示词转换并调用 GPT/DeepSeek 生成描述 ############################################################################## def transform_prompt(prompt, gender_option, furry_species, api_mode, api_key): """ 性别/物种转换的简单示例逻辑,然后调用相应 API 进行生成。 """ tags = {} # 根据选择设置性别或物种标签 if gender_option == "Trans_to_Male": tags["gender"] = "male" elif gender_option == "Trans_to_Female": tags["gender"] = "female" elif gender_option == "Trans_to_Mannequin": tags["gender"] = "genderless" elif gender_option == "Trans_to_Intersex": tags["gender"] = "intersex" elif gender_option == "Trans_to_Furry": tags["gender"] = "furry" tags["furry_species"] = furry_species or "unknown" # 原始提示词 tags["base_prompt"] = prompt if api_mode == "GPT": scene_description = generate_natural_language_description_gpt(tags, api_key) else: # DeepSeek scene_description = generate_natural_language_description_deepseek(tags, api_key) return scene_description ############################################################################## # 6. 调用翻译函数 ############################################################################## def do_translation(scene_desc, translate_language, api_mode, api_key): """ 根据选择的 API(GPT/DeepSeek)进行翻译。 """ if not scene_desc.strip(): return "" if api_mode == "GPT": return translate_text_with_gpt(scene_desc, translate_language, api_key) else: return translate_text_with_deepseek(scene_desc, translate_language, api_key) ############################################################################## # 7. 搭建 Gradio 界面 ############################################################################## def build_interface(): with gr.Blocks() as demo: gr.Markdown("## Prompts_TransTool-提示词一键性别物种转换器") with gr.Row(): with gr.Column(): # 选择调用哪个 API api_mode = gr.Radio( label="选择 API 服务 (Choose API Service)", choices=["GPT", "DeepSeek"], value="GPT" ) # 输入 API Key api_key = gr.Textbox( label="API 密钥 (API Key)", type="password", placeholder="请输入你的 GPT 或 DeepSeek API 密钥" ) # 性别 / Furry 选择 gender_option = gr.Radio( label="性别 / Furry 选项 (Gender / Furry)", choices=[ "Trans_to_Male", "Trans_to_Female", "Trans_to_Mannequin", "Trans_to_Intersex", "Trans_to_Furry" ], value="Trans_to_Male", ) # 选择 Furry 物种 furry_species = gr.Dropdown( label="Furry 物种 (Furry Species)", choices=["Wolf", "Fox", "Tiger", "Lion"], value=None, visible=False ) # 当性别选项切换时,如果选择 Furry,就显示物种下拉,否则隐藏 def show_furry_species(gender): return gr.update(visible=(gender == "Trans_to_Furry")) gender_option.change( show_furry_species, inputs=[gender_option], outputs=[furry_species] ) with gr.Column(): # 输入 prompt user_prompt = gr.Textbox( label="提示词 (Prompt)", lines=5, placeholder=( "Please Enter your prompt words. \n" "在此输入你的提示词,例如:一位穿着红色连衣裙的少女,坐在落日余晖下的草地上..." ) ) # 输出场景描述 generated_output = gr.Textbox( label="转换后的提示词 (Generated Trans-Description)", lines=7 ) with gr.Row(): translate_language = gr.Dropdown( label="翻译语言 (Translation Language)", choices=["English", "Chinese", "Japanese", "French", "German", "Dutch", "Arabic", "Russian", "Persian", "Italian"], value="English", ) translated_text = gr.Textbox( label="翻译结果 (Translated Result)", lines=7 ) ###################################################################### # 事件绑定 ###################################################################### def on_generate(prompt, gender, furry, mode, key, lang): # 1) 调用 transform_prompt 拿到转换后的描述 trans_desc = transform_prompt(prompt, gender, furry, mode, key) # 2) 调用翻译 trans_result = do_translation(trans_desc, lang, mode, key) return trans_desc, trans_result user_prompt.submit( fn=on_generate, inputs=[user_prompt, gender_option, furry_species, api_mode, api_key, translate_language], outputs=[generated_output, translated_text], ) generate_button = gr.Button("生成 / Generate") generate_button.click( fn=on_generate, inputs=[user_prompt, gender_option, furry_species, api_mode, api_key, translate_language], outputs=[generated_output, translated_text], ) def on_translate(scene_desc, lang, mode, key): return do_translation(scene_desc, lang, mode, key) translate_language.change( fn=on_translate, inputs=[generated_output, translate_language, api_mode, api_key], outputs=[translated_text] ) return demo if __name__ == "__main__": demo = build_interface() demo.launch()