Spaces:
Building
Building
File size: 11,498 Bytes
f5f3483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""JAX/dm-tree friendly dataclass implementation reusing Python dataclasses."""
import collections
import dataclasses
import functools
import sys
from absl import logging
import jax
from typing_extensions import dataclass_transform # pytype: disable=not-supported-yet
FrozenInstanceError = dataclasses.FrozenInstanceError
_RESERVED_DCLS_FIELD_NAMES = frozenset(("from_tuple", "replace", "to_tuple"))
def mappable_dataclass(cls):
"""Exposes dataclass as ``collections.abc.Mapping`` descendent.
Allows to traverse dataclasses in methods from `dm-tree` library.
NOTE: changes dataclasses constructor to dict-type
(i.e. positional args aren't supported; however can use generators/iterables).
Args:
cls: A dataclass to mutate.
Returns:
Mutated dataclass implementing ``collections.abc.Mapping`` interface.
"""
if not dataclasses.is_dataclass(cls):
raise ValueError(f"Expected dataclass, got {cls} (change wrappers order?).")
# Define methods for compatibility with `collections.abc.Mapping`.
setattr(cls, "__getitem__", lambda self, x: self.__dict__[x])
setattr(cls, "__len__", lambda self: len(self.__dict__))
setattr(cls, "__iter__", lambda self: iter(self.__dict__))
# Override the default `collections.abc.Mapping` method implementation for
# cleaner visualization. Without this change x.keys() shows the full repr(x)
# instead of only the dict_keys present. The same goes for values and items.
setattr(cls, "keys", lambda self: self.__dict__.keys())
setattr(cls, "values", lambda self: self.__dict__.values())
setattr(cls, "items", lambda self: self.__dict__.items())
# Update constructor.
orig_init = cls.__init__
all_fields = set(f.name for f in cls.__dataclass_fields__.values())
init_fields = [f.name for f in cls.__dataclass_fields__.values() if f.init]
@functools.wraps(orig_init)
def new_init(self, *orig_args, **orig_kwargs):
if (orig_args and orig_kwargs) or len(orig_args) > 1:
raise ValueError(
"Mappable dataclass constructor doesn't support positional args."
"(it has the same constructor as python dict)")
all_kwargs = dict(*orig_args, **orig_kwargs)
unknown_kwargs = set(all_kwargs.keys()) - all_fields
if unknown_kwargs:
raise ValueError(f"__init__() got unexpected kwargs: {unknown_kwargs}.")
# Pass only arguments corresponding to fields with `init=True`.
valid_kwargs = {k: v for k, v in all_kwargs.items() if k in init_fields}
orig_init(self, **valid_kwargs)
cls.__init__ = new_init
# Update base class to derive from Mapping
dct = dict(cls.__dict__)
if "__dict__" in dct:
dct.pop("__dict__") # Avoid self-references.
# Remove object from the sequence of base classes. Deriving from both Mapping
# and object will cause a failure to create a MRO for the updated class
bases = tuple(b for b in cls.__bases__ if b != object)
cls = type(cls.__name__, bases + (collections.abc.Mapping,), dct)
return cls
@dataclass_transform()
def dataclass(
cls=None,
*,
init=True,
repr=True, # pylint: disable=redefined-builtin
eq=True,
order=False,
unsafe_hash=False,
frozen=False,
kw_only: bool = False,
mappable_dataclass=True, # pylint: disable=redefined-outer-name
):
"""JAX-friendly wrapper for :py:func:`dataclasses.dataclass`.
This wrapper class registers new dataclasses with JAX so that tree utils
operate correctly. Additionally a replace method is provided making it easy
to operate on the class when made immutable (frozen=True).
Args:
cls: A class to decorate.
init: See :py:func:`dataclasses.dataclass`.
repr: See :py:func:`dataclasses.dataclass`.
eq: See :py:func:`dataclasses.dataclass`.
order: See :py:func:`dataclasses.dataclass`.
unsafe_hash: See :py:func:`dataclasses.dataclass`.
frozen: See :py:func:`dataclasses.dataclass`.
kw_only: See :py:func:`dataclasses.dataclass`.
mappable_dataclass: If True (the default), methods to make the class
implement the :py:class:`collections.abc.Mapping` interface will be
generated and the class will include :py:class:`collections.abc.Mapping`
in its base classes.
`True` is the default, because being an instance of `Mapping` makes
`chex.dataclass` compatible with e.g. `jax.tree_util.tree_*` methods, the
`tree` library, or methods related to tensorflow/python/utils/nest.py.
As a side-effect, e.g. `np.testing.assert_array_equal` will only check
the field names are equal and not the content. Use `chex.assert_tree_*`
instead.
Returns:
A JAX-friendly dataclass.
"""
def dcls(cls):
# Make sure to create a separate _Dataclass instance for each `cls`.
return _Dataclass(
init, repr, eq, order, unsafe_hash, frozen, kw_only, mappable_dataclass
)(cls)
if cls is None:
return dcls
return dcls(cls)
class _Dataclass():
"""JAX-friendly wrapper for `dataclasses.dataclass`."""
def __init__(
self,
init=True,
repr=True, # pylint: disable=redefined-builtin
eq=True,
order=False,
unsafe_hash=False,
frozen=False,
kw_only=False,
mappable_dataclass=True, # pylint: disable=redefined-outer-name
):
self.init = init
self.repr = repr # pylint: disable=redefined-builtin
self.eq = eq
self.order = order
self.unsafe_hash = unsafe_hash
self.frozen = frozen
self.kw_only = kw_only
self.mappable_dataclass = mappable_dataclass
def __call__(self, cls):
"""Forwards class to dataclasses's wrapper and registers it with JAX."""
# Remove once https://github.com/python/cpython/pull/24484 is merged.
for base in cls.__bases__:
if (dataclasses.is_dataclass(base) and
getattr(base, "__dataclass_params__").frozen and not self.frozen):
raise TypeError("cannot inherit non-frozen dataclass from a frozen one")
# `kw_only` is only available starting from 3.10.
version_dependent_args = {}
version = sys.version_info
if version.major == 3 and version.minor >= 10:
version_dependent_args = {"kw_only": self.kw_only}
# pytype: disable=wrong-keyword-args
dcls = dataclasses.dataclass(
cls,
init=self.init,
repr=self.repr,
eq=self.eq,
order=self.order,
unsafe_hash=self.unsafe_hash,
frozen=self.frozen,
**version_dependent_args,
)
# pytype: enable=wrong-keyword-args
fields_names = set(f.name for f in dataclasses.fields(dcls))
invalid_fields = fields_names.intersection(_RESERVED_DCLS_FIELD_NAMES)
if invalid_fields:
raise ValueError(f"The following dataclass fields are disallowed: "
f"{invalid_fields} ({dcls}).")
if self.mappable_dataclass:
dcls = mappable_dataclass(dcls)
def _from_tuple(args):
return dcls(zip(dcls.__dataclass_fields__.keys(), args))
def _to_tuple(self):
return tuple(getattr(self, k) for k in self.__dataclass_fields__.keys())
def _replace(self, **kwargs):
return dataclasses.replace(self, **kwargs)
def _getstate(self):
return self.__dict__
# Register the dataclass at definition. As long as the dataclass is defined
# outside __main__, this is sufficient to make JAX's PyTree registry
# recognize the dataclass and the dataclass' custom PyTreeDef, especially
# when unpickling either the dataclass object, its type, or its PyTreeDef,
# in a different process, because the defining module will be imported.
#
# However, if the dataclass is defined in __main__, unpickling in a
# subprocess does not trigger re-registration. Therefore we also need to
# register when deserializing the object, or construction (e.g. when the
# dataclass type is being unpickled). Unfortunately, there is not yet a way
# to trigger re-registration when the treedef is unpickled as that's handled
# by JAX.
#
# See internal dataclass_test for unit tests demonstrating the problems.
register_dataclass_type_with_jax_tree_util(dcls)
# Patch __setstate__ to register the dataclass on deserialization.
def _setstate(self, state):
register_dataclass_type_with_jax_tree_util(dcls)
self.__dict__.update(state)
orig_init = dcls.__init__
# Patch __init__ such that the dataclass is registered on creation if it is
# not registered on deserialization.
@functools.wraps(orig_init)
def _init(self, *args, **kwargs):
register_dataclass_type_with_jax_tree_util(dcls)
return orig_init(self, *args, **kwargs)
setattr(dcls, "from_tuple", _from_tuple)
setattr(dcls, "to_tuple", _to_tuple)
setattr(dcls, "replace", _replace)
setattr(dcls, "__getstate__", _getstate)
setattr(dcls, "__setstate__", _setstate)
setattr(dcls, "__init__", _init)
return dcls
def _dataclass_unflatten(dcls, keys, values):
"""Creates a chex dataclass from a flatten jax.tree_util representation."""
dcls_object = dcls.__new__(dcls)
attribute_dict = dict(zip(keys, values))
# Looping over fields instead of keys & values preserves the field order.
# Using dataclasses.fields fails because dataclass uids change after
# serialisation (eg, with cloudpickle).
for field in dcls.__dataclass_fields__.values():
if field.name in attribute_dict: # Filter pseudo-fields.
object.__setattr__(dcls_object, field.name, attribute_dict[field.name])
# Need to manual call post_init here as we have avoided calling __init__
if getattr(dcls_object, "__post_init__", None):
dcls_object.__post_init__()
return dcls_object
def _flatten_with_path(dcls):
path = []
keys = []
for k, v in sorted(dcls.__dict__.items()):
k = jax.tree_util.GetAttrKey(k)
path.append((k, v))
keys.append(k)
return path, keys
@functools.cache
def register_dataclass_type_with_jax_tree_util(data_class):
"""Register an existing dataclass so JAX knows how to handle it.
This means that functions in jax.tree_util operate over the fields
of the dataclass. See
https://jax.readthedocs.io/en/latest/pytrees.html#extending-pytrees
for further information.
Args:
data_class: A class created using dataclasses.dataclass. It must be
constructable from keyword arguments corresponding to the members exposed
in instance.__dict__.
"""
flatten = lambda d: jax.util.unzip2(sorted(d.__dict__.items()))[::-1]
unflatten = functools.partial(_dataclass_unflatten, data_class)
try:
jax.tree_util.register_pytree_with_keys(
nodetype=data_class, flatten_with_keys=_flatten_with_path,
flatten_func=flatten, unflatten_func=unflatten)
except ValueError:
logging.info("%s is already registered as JAX PyTree node.", data_class)
|