Spaces:
Building
Building
File size: 15,358 Bytes
f5f3483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for `fake.py`."""
import dataclasses
import functools
from absl.testing import absltest
from absl.testing import parameterized
from chex._src import asserts
from chex._src import fake
from chex._src import pytypes
import jax
import jax.numpy as jnp
ArrayBatched = pytypes.ArrayBatched
ArraySharded = pytypes.ArraySharded
# Set `FLAGS.chex_n_cpu_devices` CPU devices for all tests.
def setUpModule():
fake.set_n_cpu_devices()
def _assert_jitted(fn, fn_input, is_jitted):
"""Asserts that a function can be jitted or not.
Args:
fn: The function to be tested
fn_input: Input to pass to the function
is_jitted: Assert that the function can be jitted with jax.jit (True) or
cannot be jitted (False), i.e. the fake jit is working correctly.
"""
asserts.clear_trace_counter()
max_traces = 1 if is_jitted else 0
wrapped_fn = jax.jit(asserts.assert_max_traces(fn, max_traces))
wrapped_fn(fn_input)
def _assert_pmapped(fn, fn_input, is_pmapped, should_jit=False):
"""Asserts whether a function can be pmapped or not.
Args:
fn: The function to be tested
fn_input: Input to pass to the function
is_pmapped: Assert that the function can be pmapped with jax.pmap (True) or
cannot be pmapped (False), i.e. the fake pmap is working correctly.
should_jit: if True, asserts that the function is jitted, regardless of it
being pmapped or not.
"""
num_devices = len(jax.devices())
if should_jit:
asserts.clear_trace_counter()
fn = asserts.assert_max_traces(fn, n=1)
wrapped_fn = jax.pmap(fn, axis_size=num_devices)
fn_input = jnp.broadcast_to(fn_input, (num_devices,) + fn_input.shape)
output = wrapped_fn(fn_input)
# We test whether the function has been pmapped by inspecting the type of
# the function output, if it is a sharded array type then the function has
# been pmapped
if is_pmapped:
expected_type = jax.Array
assert_message = f'Output is type {type(output)}, expected {expected_type}'
assert isinstance(output, expected_type), assert_message
else:
expected_type = 'DeviceArray'
assert_message = f'Output is type {type(output)}, expected {expected_type}'
# ShardedDeviceArray is a subclass of DeviceArray. So, to enforce we have
# a DeviceArray, we also check it's not a sharded one.
assert (isinstance(output, jax.Array) and
len(output.sharding.device_set) == 1), assert_message
class PmapFakeTest(parameterized.TestCase):
def test_assert_pmapped(self):
def foo(x):
return x * 2
fn_input = jnp.ones((4,))
_assert_pmapped(foo, fn_input, True)
# Since this test runs only on 1 device, having a test to check if the
# output is sharded or not is not correct. With jax.Array, you can check
# the `len(output.sharding.device_set)` to see if its sharded or not, but
# here because of a single device it fails.
def test_assert_jitted(self):
fn_input = jnp.ones((4,))
def foo(x):
return x * 2
_assert_jitted(foo, fn_input, True)
with self.assertRaises(AssertionError):
_assert_jitted(foo, fn_input, False)
@parameterized.named_parameters([
('plain_jit', {'enable_patching': True}, False),
('faked_jit', {'enable_patching': False}, True),
])
def test_fake_jit(self, fake_kwargs, is_jitted):
fn_input = jnp.ones((4,))
def foo(x):
return x * 2
# Call with context manager
with fake.fake_jit(**fake_kwargs):
_assert_jitted(foo, fn_input, is_jitted)
# Call with start/stop
ctx = fake.fake_jit(**fake_kwargs)
ctx.start()
_assert_jitted(foo, fn_input, is_jitted)
ctx.stop()
@parameterized.named_parameters([
('plain_pmap_but_jit', True, True),
('plain_pmap', True, False),
('faked_pmap_but_jit', False, True),
('faked_pmap', False, False),
])
def test_fake_pmap_(self, is_pmapped, jit_result):
enable_patching = not is_pmapped
fn_input = jnp.ones((4,))
def foo(x):
return x * 2
# Call with context manager
with fake.fake_pmap(enable_patching=enable_patching, jit_result=jit_result):
_assert_pmapped(foo, fn_input, is_pmapped, jit_result)
# Call with start/stop
ctx = fake.fake_pmap(enable_patching=enable_patching, jit_result=jit_result)
ctx.start()
_assert_pmapped(foo, fn_input, is_pmapped, jit_result)
ctx.stop()
def test_fake_pmap_axis_name(self):
with fake.fake_pmap():
@functools.partial(jax.pmap, axis_name='i')
@functools.partial(jax.pmap, axis_name='j')
def f(_):
return jax.lax.axis_index('i'), jax.lax.axis_index('j')
x, y = f(jnp.zeros((4, 2)))
self.assertEqual(x.tolist(), [[0, 0], [1, 1], [2, 2], [3, 3]])
self.assertEqual(y.tolist(), [[0, 1], [0, 1], [0, 1], [0, 1]])
@parameterized.named_parameters([
('fake_nothing', {
'enable_pmap_patching': False,
'enable_jit_patching': False
}, True, True),
('fake_pmap', {
'enable_pmap_patching': True,
'enable_jit_patching': False
}, False, True),
# Default pmap will implicitly compile the function
('fake_jit', {
'enable_pmap_patching': False,
'enable_jit_patching': True
}, True, False),
('fake_both', {
'enable_pmap_patching': True,
'enable_jit_patching': True
}, False, False),
])
def test_pmap_and_jit(self, fake_kwargs, is_pmapped, is_jitted):
fn_input = jnp.ones((4,))
def foo(x):
return x * 2
# Call with context manager
with fake.fake_pmap_and_jit(**fake_kwargs):
_assert_pmapped(foo, fn_input, is_pmapped)
_assert_jitted(foo, fn_input, is_jitted)
# Call with start/stop
ctx = fake.fake_pmap_and_jit(**fake_kwargs)
ctx.start()
_assert_pmapped(foo, fn_input, is_pmapped)
_assert_jitted(foo, fn_input, is_jitted)
ctx.stop()
@parameterized.named_parameters([
('fake_nothing', False, False),
('fake_pmap', True, False),
('fake_jit', False, True),
('fake_both', True, True),
])
def test_with_kwargs(self, fake_pmap, fake_jit):
with fake.fake_pmap_and_jit(fake_pmap, fake_jit):
num_devices = len(jax.devices())
@functools.partial(jax.pmap, axis_size=num_devices)
@jax.jit
def foo(x, y):
return (x * 2) + y
# pmap over all available devices
inputs = jnp.array([1, 2])
inputs = jnp.broadcast_to(inputs, (num_devices,) + inputs.shape)
expected = jnp.broadcast_to(jnp.array([3, 6]), (num_devices, 2))
asserts.assert_trees_all_close(foo(x=inputs, y=inputs), expected)
@parameterized.named_parameters([
('fake_nothing', False, 1),
('fake_pmap', True, 1),
('fake_nothing_no_static_args', False, ()),
('fake_pmap_no_static_args', True, ()),
])
def test_with_static_broadcasted_argnums(self, fake_pmap, static_argnums):
with fake.fake_pmap_and_jit(fake_pmap, enable_jit_patching=False):
num_devices = len(jax.devices())
# Note: mode='bar' is intended to test that we correctly handle kwargs
# with defaults for which we don't pass a value at call time.
@functools.partial(
jax.pmap,
axis_size=num_devices,
static_broadcasted_argnums=static_argnums,
)
@functools.partial(
jax.jit,
static_argnums=static_argnums,
)
def foo(x, multiplier, y, mode='bar'):
if static_argnums == 1 or 1 in static_argnums:
# Verify that the static arguments are not replaced with tracers.
self.assertIsInstance(multiplier, int)
if mode == 'bar':
return (x * multiplier) + y
else:
return x
# pmap over all available devices
inputs = jnp.array([1, 2])
inputs = jnp.broadcast_to(inputs, (num_devices,) + inputs.shape)
func = lambda: foo(inputs, 100, inputs) # Pass multiplier=100.
if static_argnums == 1: # Should work.
expected = jnp.broadcast_to(jnp.array([101, 202]), (num_devices, 2))
result = func()
asserts.assert_trees_all_close(result, expected)
else: # Should error.
with self.assertRaises(ValueError):
result = func()
@parameterized.parameters(1, [1])
def test_pmap_with_complex_static_broadcasted_object(self, static_argnums):
@dataclasses.dataclass
class Multiplier:
x: int
y: int
def foo(x, multiplier, y):
if static_argnums == 1 or 1 in static_argnums:
# Verify that the static arguments are not replaced with tracers.
self.assertIsInstance(multiplier, Multiplier)
return x * multiplier.x + y * multiplier.y
with fake.fake_pmap_and_jit():
num_devices = jax.device_count()
# pmap over all available devices
transformed_foo = jax.pmap(
foo,
axis_size=num_devices,
static_broadcasted_argnums=static_argnums,
)
x, y = jax.random.randint(
jax.random.PRNGKey(27), (2, num_devices, 3, 5), 0, 10
)
# Test 1.
mult = Multiplier(x=2, y=7)
asserts.assert_trees_all_equal(
transformed_foo(x, mult, y),
foo(x, mult, y),
x * mult.x + y * mult.y,
)
# Test 2.
mult = Multiplier(x=72, y=21)
asserts.assert_trees_all_equal(
transformed_foo(x, mult, y),
foo(x, mult, y),
x * mult.x + y * mult.y,
)
@parameterized.named_parameters([
('fake_nothing', False, False),
('fake_pmap', True, False),
('fake_jit', False, True),
('fake_both', True, True),
])
def test_with_partial(self, fake_pmap, fake_jit):
with fake.fake_pmap_and_jit(fake_pmap, fake_jit):
num_devices = len(jax.devices())
# Testing a common use-case where non-parallel arguments are partially
# applied before pmapping
def foo(x, y, flag):
return (x * 2) + y if flag else (x + y)
foo = functools.partial(foo, flag=True)
foo = jax.pmap(foo, axis_size=num_devices)
foo = jax.jit(foo)
# pmap over all available devices
inputs = jnp.array([1, 2])
inputs = jnp.broadcast_to(inputs, (num_devices,) + inputs.shape)
expected = jnp.broadcast_to(jnp.array([3, 6]), (num_devices, 2))
asserts.assert_trees_all_close(foo(inputs, inputs), expected)
asserts.assert_trees_all_close(foo(x=inputs, y=inputs), expected)
@parameterized.named_parameters([
('fake_nothing', False, False),
('fake_pmap', True, False),
('fake_jit', False, True),
('fake_both', True, True),
])
def test_with_default_params(self, fake_pmap, fake_jit):
with fake.fake_pmap_and_jit(fake_pmap, fake_jit):
num_devices = len(jax.devices())
# Default flag specified at definition time
def foo(x, y, flag=True):
return (x * 2) + y if flag else (x + y)
default_foo = jax.pmap(foo, axis_size=num_devices)
default_foo = jax.jit(default_foo)
inputs = jnp.array([1, 2])
inputs = jnp.broadcast_to(inputs, (num_devices,) + inputs.shape)
expected = jnp.broadcast_to(jnp.array([3, 6]), (num_devices, 2))
asserts.assert_trees_all_close(default_foo(inputs, inputs), expected)
asserts.assert_trees_all_close(default_foo(x=inputs, y=inputs), expected)
# Default overriden by partial to execute other branch
overidden_foo = functools.partial(foo, flag=False)
overidden_foo = jax.pmap(overidden_foo, axis_size=num_devices)
overidden_foo = jax.jit(overidden_foo)
expected = jnp.broadcast_to(jnp.array([2, 4]), (num_devices, 2))
asserts.assert_trees_all_close(overidden_foo(inputs, inputs), expected)
asserts.assert_trees_all_close(
overidden_foo(x=inputs, y=inputs), expected)
def test_parallel_ops_equivalence(self):
"""Test equivalence between parallel operations using pmap and vmap."""
num_devices = len(jax.devices())
inputs = jax.random.uniform(shape=(num_devices, num_devices, 2),
key=jax.random.PRNGKey(1))
def test_equivalence(fn):
with fake.fake_pmap(enable_patching=False):
outputs1 = jax.pmap(fn, axis_name='i', axis_size=num_devices)(inputs)
with fake.fake_pmap(enable_patching=True):
outputs2 = jax.pmap(fn, axis_name='i', axis_size=num_devices)(inputs)
with fake.fake_pmap(enable_patching=True, jit_result=True):
outputs3 = jax.pmap(fn, axis_name='i', axis_size=num_devices)(inputs)
asserts.assert_trees_all_close(outputs1, outputs2, outputs3)
parallel_ops_and_kwargs = [
(jax.lax.psum, {}),
(jax.lax.pmax, {}),
(jax.lax.pmin, {}),
(jax.lax.pmean, {}),
(jax.lax.all_gather, {}),
(jax.lax.all_to_all, {
'split_axis': 0,
'concat_axis': 1
}),
(jax.lax.ppermute, {
'perm': [(x, (x + 1) % num_devices) for x in range(num_devices)]
}),
]
def fn(op, kwargs, x, y=2.0):
return op(x * y, axis_name='i', **kwargs)
partial_fn = functools.partial(fn, y=4.0)
lambda_fn = lambda op, kwargs, x: fn(op, kwargs, x, y=5.0)
for op, kwargs in parallel_ops_and_kwargs:
test_equivalence(functools.partial(fn, op, kwargs))
test_equivalence(functools.partial(fn, op, kwargs, y=3.0))
test_equivalence(functools.partial(partial_fn, op, kwargs))
test_equivalence(functools.partial(lambda_fn, op, kwargs))
def test_fake_parallel_axis(self):
inputs = jnp.ones(shape=(2, 2))
with fake.fake_pmap(fake_parallel_axis=False):
@jax.pmap
def no_fake_parallel_axis_fn(x):
asserts.assert_shape(x, (2,))
return 2.0 * x
outputs = no_fake_parallel_axis_fn(inputs)
asserts.assert_trees_all_close(outputs, 2.0)
with fake.fake_pmap(fake_parallel_axis=True):
@jax.pmap
def fake_parallel_axis_fn(x):
asserts.assert_shape(x, (2, 2,))
return 2.0 * x
outputs = fake_parallel_axis_fn(inputs)
asserts.assert_trees_all_close(outputs, 2.0)
class _Counter():
"""Counts how often an instance is called."""
def __init__(self):
self.count = 0
def __call__(self, *unused_args, **unused_kwargs):
self.count += 1
class OnCallOfTransformedFunctionTest(parameterized.TestCase):
def test_on_call_of_transformed_function(self):
counter = _Counter()
with fake.OnCallOfTransformedFunction('jax.jit', counter):
jax.jit(jnp.sum)(jnp.zeros((10,)))
jax.jit(jnp.max)(jnp.zeros((10,)))
self.assertEqual(counter.count, 2)
if __name__ == '__main__':
absltest.main()
|