Spaces:
Building
Building
File size: 9,794 Bytes
f5f3483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# Copyright 2024 The etils Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Check util."""
from __future__ import annotations
import collections
import dataclasses
import functools
import inspect
import typing
from typing import Any, Callable, Optional, TypeVar
from etils import epy
from etils.enp import numpy_utils
from etils.enp import type_parsing
from etils.enp.array_types import typing as array_typing
import numpy as np
_TypeForm = Any
_Fn = TypeVar('_Fn')
# TODO(epot): Support:
# * return annotations
# * Tuple,...
# * Union
# * shape checking
@dataclasses.dataclass
class _ArrayParam:
"""Argument matching an array."""
type: array_typing.ArrayAliasMeta
is_optional: bool
name: str
def asarray(self, v, *, xnp: numpy_utils.NpModule):
"""Convert the value to array of the correct dtype."""
try:
return self.type.dtype.asarray(v, xnp=xnp, casting='none')
except Exception as e: # pylint: disable=broad-except
epy.reraise(e, prefix=f'Invalid {self.name}: ')
@dataclasses.dataclass
class _FnSignatureCache:
"""Cache of the function signature."""
sig: inspect.Signature
has_xnp_kwargs: bool
array_params: dict[str, _ArrayParam]
@typing.overload
def check_and_normalize_arrays(
fn: None = ...,
*,
strict: bool = ...,
) -> Callable[[_Fn], _Fn]:
...
@typing.overload
def check_and_normalize_arrays(
fn: _Fn = ...,
*,
strict: bool = ...,
) -> _Fn:
...
def check_and_normalize_arrays(fn=None, *, strict: bool = True):
"""Check and normalize arrays.
This function:
* Validate that the dtype/shape input arrays match the typing annotations
* Normalize np, jnp, tf types to be consistent
* Add an optional `xnp` argument to convert input arrays to np/jnp/tnp.
See doc at: https://github.com/google/etils/blob/main/etils/array_types/README.md
Example:
```python
@enp.check_and_normalize_arrays(strict=False)
def add(x: FloatArray[...], y: FloatArray[...]) -> y: FloatArray[...]:
return x + y
# Inside the function, `np` normalized to `jnp`
add(np.array(1.), jnp.array(2.)) == jnp.array(3.)
# strict=False, so `list` accepted and normalized to `xnp`
add(jnp.array(1.), [1., 2., 3.]) == jnp.array([2., 3., 4.])
```
Args:
fn: The function to decorate. Arguments will be automatically infered.
strict: If `False`, `fn` will also accept list, int,... in which case those
are automatically converted to `xnp`
Returns:
fn: The decorated function, with dynamic shape checking
"""
if fn is None:
return functools.partial(check_and_normalize_arrays, strict=strict)
fn._array_types_state = None # pylint: disable=protected-access
@functools.wraps(fn)
def decorated_fn(*args, **kwargs):
try:
kwargs = dict(kwargs)
xnp = kwargs.pop('xnp', None)
# First time the function is called, precompute & cache the info
if fn._array_types_state is None: # pylint: disable=protected-access
fn._array_types_state = _parse_signature(fn) # pylint: disable=protected-access
state: _FnSignatureCache = fn._array_types_state # pylint: disable=protected-access
# In case `xnp` do not have default value
if state.has_xnp_kwargs:
kwargs['xnp'] = ...
bound_args = state.sig.bind(*args, **kwargs)
# Filter the non-array args
# TODO(epot): Should raise an error for non-optional when v is None
array_args = {
k: v
for k, v in bound_args.arguments.items()
if k in state.array_params and v is not None
}
# Extract the xnp (either explicitly passed, or auto-infered)
xnp = xnp or _get_xnp(array_args, strict=strict)
_maybe_set_tnp_casting(xnp)
# Normalize all arrays:
# * Convert to xnp
# * Check dtype
array_args = {
k: state.array_params[k].asarray(v, xnp=xnp)
for k, v in array_args.items()
}
# TODO(epot): Check the shape
# Update the arguments after normalization
bound_args.arguments.update(array_args)
# Eventually add `xnp` kwarg
if state.has_xnp_kwargs:
bound_args.arguments['xnp'] = xnp
except Exception as e: # pylint: disable=broad-except
epy.reraise(
e,
prefix=(
f'@enp.check_and_normalize_arrays error for {fn.__qualname__}: '
),
)
return fn(*bound_args.args, **bound_args.kwargs)
return decorated_fn
def _get_xnp(
array_args: dict[str, Any],
*,
strict: bool,
) -> numpy_utils.NpModule:
"""Extract the xnp module common to the args."""
xnps = collections.defaultdict(list)
for k, v in array_args.items():
try:
xnps[numpy_utils.lazy.get_xnp(v, strict=strict)].append(k)
except Exception as e: # pylint: disable=broad-except
epy.reraise(e, prefix=f'Invalid {k}: Expected xnp.ndarray: ')
return _infer_xnp(xnps)
def _infer_xnp(
xnps: dict[numpy_utils.NpModule, list[str]]
) -> numpy_utils.NpModule:
"""Extract the `xnp` module."""
non_np_xnps = set(xnps) - {np} # jnp, tnp, torch take precedence on `np`
# Detecting conflicting xnp
if len(non_np_xnps) > 1:
xnps = {k.__name__: v for k, v in xnps.items()}
raise ValueError(f'Conflicting numpy types: {xnps}')
if not non_np_xnps:
return np
else:
(xnp,) = non_np_xnps
return xnp
@functools.lru_cache(None)
def _maybe_set_tnp_casting(xnp: numpy_utils.NpModule) -> None:
"""If TF numpy mode is not set, make sure `tnp.asarray(1.)` is `tf.float32`.
If user uses TF without numpy mode, it will create casting issues (for
example: `tf.float64 + tf.float32` will raise an error).
To limit the errors encountered, we set `tnp.asarray(1.)` to `tf.float32`
instead of `tf.float64`.
If numpy mode is already activated, then no need to do anything, as
`tf.float64 + tf.float32` will support auto-casting, like Jax and Numpy.
Args:
xnp: numpy module.
"""
if not numpy_utils.lazy.has_tf or xnp is not numpy_utils.lazy.tnp:
return # Not tnp module
if not numpy_utils.lazy.is_tnp_enabled:
# When TF numpy mode is not enabled, `tnp.asarray(1.)` returns tf.float64,
# creating conflict because TF do fail for operations like:
# `tf.float64 + tf.float32`
from tensorflow.python.ops.numpy_ops import np_dtypes # pylint: disable=g-import-not-at-top,g-direct-tensorflow-import # pytype: disable=import-error
if not np_dtypes.is_prefer_float32():
np_dtypes.set_prefer_float32(True)
msg = epy.dedent(
"""
WARNING: Using array types for TF but without numpy mode enabled. It
is recommended to activate numpy mode as:
import tensorflow.experimental.numpy as tnp
tnp.experimental_enable_numpy_behavior(prefer_float32=True)
"""
)
# Use print otherwise this isn't displayed on Colab
# Could have a `epy.logging` module which auto-print on Colab.
print(msg)
def _parse_signature(fn) -> _FnSignatureCache:
"""Parse the function signature."""
# At this point, `ForwardRef` should have been resolved.
try:
hints = typing.get_type_hints(fn)
except Exception as e: # pylint: disable=broad-except
epy.reraise(
e,
prefix=(
f'Could not infer typing annotation of {fn.__qualname__} '
f'defined in {fn.__module__}'
),
)
sig = inspect.signature(fn)
# For each valid params, create the validator
# TODO(py38): Use :=
array_params = {}
for name, param in sig.parameters.items():
array_param = _get_array_param(param, hints)
if array_param is not None:
array_params[name] = array_param
if not array_params:
raise ValueError(
f'Could not detect any array type hints in {fn.__qualname__} with '
f'signature {sig}.'
)
return _FnSignatureCache(
sig=sig,
has_xnp_kwargs='xnp' in sig.parameters,
array_params=array_params,
)
def _get_array_param(
param: inspect.Parameter,
hints: dict[str, _TypeForm],
) -> Optional[_ArrayParam]:
"""Parse the type & hint of the array."""
name = param.name
if name not in hints: # Not an array param
return None
hint = hints[name]
def make_err(msg: str) -> Exception:
return NotImplementedError(
f'`enp.check_and_normalize_arrays` does not support {msg}. Please open '
f'an issue if you need this feature. For `{name}: {hint}`'
)
leaf_types = type_parsing.get_leaf_types(hint)
is_optional = None in leaf_types
# Filter Optional
leaf_types = [t for t in leaf_types if t is not None]
# Currently, only Optional[Array] or Array supported
are_array = [isinstance(l, array_typing.ArrayAliasMeta) for l in leaf_types]
count_array = are_array.count(True)
count_non_array = are_array.count(False)
if count_array and count_non_array:
raise make_err('Union of array and non-array')
if count_array > 1:
raise make_err('Union of arrays')
if count_non_array:
return None # Not an array param
(array_type,) = leaf_types
if param.kind in {
inspect.Parameter.VAR_POSITIONAL,
inspect.Parameter.VAR_KEYWORD,
}:
raise make_err('*args, **kwargs')
return _ArrayParam(
is_optional=is_optional,
type=array_type,
name=name,
)
|