Spaces:
Building
Building
File size: 10,941 Bytes
f5f3483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
# Copyright 2024 The etils Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Numpy utils.
Attributes:
tau: The circle constant (2 * pi). (https://tauday.com/)
"""
from __future__ import annotations
import sys
import typing
from typing import Any, Optional, TypeVar
from etils import epy
import numpy as np
if typing.TYPE_CHECKING:
from etils.enp.typing import Array
_T = TypeVar('_T')
# TODO(pytype): Ideally should use `-> Literal[np]:` but Python does not
# support this: https://github.com/python/typing/issues/1039
# Thankfully, pytype correctly auto-infer `np` when returned by `get_xnp`
NpModule = Any
# Mirror math.tau (PEP 628). See https://tauday.com/
tau = 2 * np.pi
# When `strict=False` (in `get_xnp`, `is_array`,...), those types are also
# accepted:
_ARRAY_LIKE_TYPES = (int, bool, float, list, tuple)
# During the class construction, pytype fails because of name conflict between
# the `np` `@property` and the module.
_np = np
class _LazyArrayMeta(type):
def __instancecheck__(cls, obj) -> bool:
return lazy.is_array(obj)
class _LazyImporter:
"""Lazy import module.
Help to write code seamlessly working with np, Jax and TF.
Because libs are lazily imported, TF and Jax are always optional dependencies.
"""
@property
def has_jax(self) -> bool:
return 'jax' in sys.modules
@property
def has_tf(self) -> bool:
return 'tensorflow' in sys.modules
@property
def has_torch(self) -> bool:
return 'torch' in sys.modules
@property
def jax(self):
import jax # pylint: disable=g-import-not-at-top # pytype: disable=import-error
return jax
@property
def jnp(self):
import jax.numpy as jnp # pylint: disable=g-import-not-at-top # pytype: disable=import-error
return jnp
@property
def tf(self):
import tensorflow # pylint: disable=g-import-not-at-top # pytype: disable=import-error
return tensorflow
@property
def tnp(self):
import tensorflow.experimental.numpy as tnp # pylint: disable=g-import-not-at-top # pytype: disable=import-error
return tnp
@property
def torch(self):
import torch # pylint: disable=g-import-not-at-top # pytype: disable=import-error
return torch
@property
def np(self):
return np
def is_np_xnp(self, xnp: NpModule) -> bool:
return xnp is _np
def is_tf_xnp(self, xnp: NpModule) -> bool:
return self.has_tf and xnp is self.tnp
def is_jax_xnp(self, xnp: NpModule) -> bool:
return self.has_jax and xnp is self.jnp
def is_torch_xnp(self, xnp: NpModule) -> bool:
return self.has_torch and xnp is self.torch
def is_np(self, x: Array) -> bool:
return isinstance(x, (np.ndarray, np.generic))
def is_tf(self, x: Array) -> bool:
return self.has_tf and isinstance(
x,
(
self.tnp.ndarray,
self.tf.TensorSpec,
self.tf.__internal__.types.Tensor,
),
)
def is_jax(self, x: Array) -> bool:
return self.has_jax and isinstance(x, self.jnp.ndarray)
def is_torch(self, x: Array) -> bool:
return self.has_torch and isinstance(x, self.torch.Tensor)
def is_array(self, x: Array, *, strict: bool = True) -> bool:
is_array_like = False if strict else isinstance(x, _ARRAY_LIKE_TYPES)
return (
self.is_np(x)
or self.is_jax(x)
or self.is_tf(x)
or self.is_torch(x)
or is_array_like
)
def is_np_dtype(self, dtype) -> bool:
return isinstance(dtype, np.dtype) or epy.issubclass(dtype, np.generic)
def is_tf_dtype(self, dtype) -> bool:
return self.has_tf and isinstance(dtype, self.tf.dtypes.DType)
def is_jax_dtype(self, dtype) -> bool:
# `jnp.int64`,... are `jax._src.numpy.lax_numpy._ScalarMeta`, but
# jnp.ndarray.dtype are numpy dtype
check_jax = self.has_jax and isinstance(dtype, type(self.jnp.float32))
return self.is_np_dtype(dtype) or check_jax
def is_torch_dtype(self, dtype) -> bool:
return self.has_torch and isinstance(dtype, self.torch.dtype)
def is_dtype(self, dtype) -> bool:
return (
self.is_np_dtype(dtype)
or self.is_jax_dtype(dtype)
or self.is_tf_dtype(dtype)
or self.is_torch_dtype(dtype)
)
def as_np_dtype(self, dtype):
if self.is_tf_dtype(dtype):
dtype = dtype.as_numpy_dtype
elif self.is_torch_dtype(dtype):
from etils.enp import compat # pylint: disable=g-import-not-at-top
dtype = compat.dtype_torch_to_np(dtype)
elif not self.is_jax_dtype(dtype) and not self.is_np_dtype(dtype):
raise TypeError(f'Invalid dtype: {dtype!r}')
return np.dtype(dtype)
def as_tf_dtype(self, dtype):
return self.tf.dtypes.as_dtype(self.as_np_dtype(dtype))
def as_jax_dtype(self, dtype):
return self.as_np_dtype(dtype) # Jax and numpy types are mostly similar
def as_torch_dtype(self, dtype):
from etils.enp import compat # pylint: disable=g-import-not-at-top
return compat.dtype_np_to_torch(self.as_np_dtype(dtype))
def as_dtype(self, dtype, *, xnp: NpModule = _np):
"""Normalize to dtype for the given `xnp`."""
if self.is_np_xnp(xnp):
return self.as_np_dtype(dtype)
elif self.is_tf_xnp(xnp):
return self.as_tf_dtype(dtype)
elif self.is_jax_xnp(xnp):
return self.as_jax_dtype(dtype)
elif self.is_torch_xnp(xnp):
return self.as_torch_dtype(dtype)
else:
raise TypeError(f'Unknown xnp: {xnp!r}')
def dtype_from_array(
self,
array_like: Array,
*,
strict: bool = True,
) -> Optional[_np.dtype]:
"""Returns the dtype associated with the array."""
if self.is_array(array_like): # Already an ndarray, normalize the dtype
dtype = array_like.dtype
elif strict: # Not an array and strict mode: error
raise TypeError(
f'Cannot extract dtype from non-array {type(array_like)}, '
'when strict=True.'
)
elif isinstance(array_like, bool):
dtype = np.bool_
elif isinstance(array_like, _ARRAY_LIKE_TYPES): # list, tuple, int, float
# TODO(epot): Could have a smarter way of infering the dtype for
# scalar, int, float,... but difficult to infer list without performance
# cost (one way would be to call `asarray(array_like, dtype=None)`, then
# cast again)
return None
else:
raise TypeError(f'Cannot extract dtype from non-array {type(array_like)}')
return self.as_dtype(dtype)
def get_xnp(self, x: Array, *, strict: bool = True): # -> NpModule:
"""Returns the numpy module associated with the given array.
Args:
x: Either tf, jax or numpy array.
strict: If `False`, default to `np.array` if the array can't be infered (
to support array-like: list, tuple,...)
Returns:
The numpy module.
"""
# This is inspired from NEP 37 but without the `__array_module__` magic:
# https://numpy.org/neps/nep-0037-array-module.html
# Note there is also an implementation of NEP 37 from the author, but look
# overly complicated and not available at google.
# https://github.com/seberg/numpy-dispatch
if self.is_jax(x):
return self.jnp
elif self.is_tf(x):
return self.tnp
elif self.is_np(x):
return np
elif self.is_torch(x):
return self.torch
elif not strict and isinstance(x, _ARRAY_LIKE_TYPES):
# `strict=False` support `[0, 0, 0]`, `0`,...
return np
else:
raise TypeError(
f'Cannot infer the numpy module from array: {type(x).__name__}'
)
@property
def is_tnp_enabled(self) -> bool:
"""Returns `True` if numpy mode is enabled."""
return self.has_tf and hasattr(self.tf.Tensor, 'reshape')
class LazyArray(metaclass=_LazyArrayMeta):
"""Represent `tf.Tensor`, `jax.ndarray`, `np.ndarray`, `torch.Tensor`.
Allow to check isinstance without triggering imports from other modules:
```
assert isinstance(jnp.zeros((2,)), enp.lazy.LazyArray)
```
"""
lazy = _LazyImporter()
def get_np_module(array: Array, *, strict: bool = True): # -> NpModule:
"""Returns the numpy module associated with the given array.
Args:
array: Either tf, jax or numpy array.
strict: If `False`, default to `np.array` if the array can't be infered (
to support array-like: list, tuple,...)
Returns:
The numpy module.
"""
return lazy.get_xnp(array, strict=strict)
def is_dtype_str(dtype) -> bool:
"""Returns True if the dtype is `str`."""
# tf.string.as_numpy_dtype is object
try:
dtype = np.dtype(dtype)
except TypeError: # `jax.random.PRNGKeyArray` fail.
return False
return dtype.type in {np.object_, np.str_, np.bytes_}
def is_array_str(x: Any) -> bool:
"""Returns True if the given array is a `str` array.
Note: Also returns True for scalar `str`, `bytes` values. For compatibility
with `tensor.numpy()` which returns `bytes`
Args:
x: The array to test
Returns:
True or False
"""
# `Tensor(shape=(), dtype=tf.string).numpy()` returns `bytes`.
if isinstance(x, (bytes, str)):
return True
elif is_array(x):
return is_dtype_str(x.dtype)
else:
return False
def is_array(x: Any) -> bool:
"""Returns `True` if array is np or `jnp` array."""
if isinstance(x, np.ndarray):
return True
elif lazy.has_jax and isinstance(x, lazy.jnp.ndarray):
return True
else:
return False
@np.vectorize
def _to_str_array(x):
"""Decodes bytes -> str array."""
# tf.string tensors are returned as bytes, so need to convert them back to str
return x.decode('utf8') if isinstance(x, bytes) else x
@typing.overload
def normalize_bytes2str(x: bytes) -> str:
...
@typing.overload
def normalize_bytes2str(x: _T) -> _T:
...
# Ideally could also add `BytesArray -> StrArray`, but both `bytes` and `str`
# are `StrArray`
def normalize_bytes2str(x):
"""Normalize `bytes` array to `str` (UTF-8).
Example of usage:
```python
for ex in tfds.as_numpy(ds): # tf.data returns `tf.string` as `bytes`
ex = tf.nest.map_structure(enp.normalize_bytes2str, ex)
```
Args:
x: Any array
Returns:
x: `bytes` array are decoded as `str`
"""
if isinstance(x, str):
return x
if isinstance(x, bytes):
return x.decode('utf8')
elif is_array_str(x):
# Note: `np.char.decode` is likely faster but don't work on `object` nor
# bytes arrays.
return _to_str_array(x)
else:
return x
|