File size: 5,329 Bytes
f5f3483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright 2024 The etils Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tree API."""

import concurrent.futures
import functools
from typing import Any, Callable, Iterable, Iterator, Optional, TypeVar

from etils import enp
from etils import etqdm
from etils.array_types import Array
from etils.etree import backend as backend_lib
from etils.etree.typing import LeafFn, Tree  # pylint: disable=g-importing-member,g-multiple-import

_T = Any  # TODO(pytype): Replace by `TypeVar`
_Tin = Any  # Could make this TypeVar if typing support variadic
_Tout = TypeVar('_Tout')


class TreeAPI:
  """Tree API, using either `jax.tree_utils`, `tf.nest` or `tree` backend."""

  def __init__(self, backend: backend_lib.Backend):
    self.backend = backend

  def map(
      self,
      map_fn: Callable[..., _Tout],  # Callable[[_Tin0, _Tin1,...], Tout]
      *trees: Tree[_Tin],  # _Tin0, _Tin1,...
      is_leaf: Optional[LeafFn] = None,
  ) -> Tree[_Tout]:
    """Same as `tree.map_structure`.

    Args:
      map_fn: Worker function
      *trees: Nested input to pass to the `map_fn`
      is_leaf: Don't recurse into leaf if `is_leaf(node)` is `True`

    Returns:
      The nested structure after `map_fn` has been applied.
    """
    return self.backend.map(map_fn, *trees, is_leaf=is_leaf)

  def parallel_map(
      self,
      map_fn: Callable[..., _Tout],  # Callable[[_Tin0, _Tin1,...], Tout]
      *trees: Tree[_Tin],  # _Tin0, _Tin1,...
      num_threads: Optional[int] = None,
      progress_bar: bool = False,
      is_leaf: Optional[LeafFn] = None,
  ) -> Tree[_Tout]:
    """Same as `tree.map_structure` but apply `map_fn` in parallel.

    Args:
      map_fn: Worker function
      *trees: Nested input to pass to the `map_fn`
      num_threads: Number of workers (default to CPU count * 5)
      progress_bar: If True, display a progression bar.
      is_leaf: Don't recurse into leaf if `is_leaf(node)` is `True`

    Returns:
      The nested structure after `map_fn` has been applied.
    """
    # TODO(epot): Allow nesting `parallel_map` while keeping max num threads
    # constant. How to avoid dead locks ?

    with concurrent.futures.ThreadPoolExecutor(
        max_workers=num_threads
    ) as executor:
      launch_worker = functools.partial(executor.submit, map_fn)
      futures = self.backend.map(launch_worker, *trees, is_leaf=is_leaf)

      leaves, _ = self.backend.flatten(futures, is_leaf=is_leaf)

      itr = concurrent.futures.as_completed(leaves)
      if progress_bar:
        itr = etqdm.tqdm(itr, total=len(leaves))

      for f in itr:  # Propagate exception to main thread.
        if f.exception():
          raise f.exception()

    return self.backend.map(lambda f: f.result(), futures)

  def unzip(self, tree: Tree[Iterable[_T]]) -> Iterator[Tree[_T]]:
    """Unpack a tree of iterable.

    This is the reverse operation of `tree.map_structure(zip, *trees)`

    Example:

    ```python
    etree.unzip({'a': np.array([1, 2, 3])}) == [{'a': 1}, {'a': 2}, {'a': 3}]
    ```

    Args:
      tree: The tree to unzip

    Yields:
      Trees of same structure than the input, but with individual elements.
    """
    leaves, treedef = self.backend.flatten(tree)
    for leaf_elems in zip(*leaves):  # TODO(py310): check=True
      yield self.backend.unflatten(treedef, leaf_elems)

  def stack(
      self, trees: Iterable[Tree[Array['*s']]]
  ) -> Tree[Array['n_trees *s']]:
    """Stack a tree of `Iterable[Array]`.

    Supports `jax`, `tf`, `np`.

    Example:

    ```python
    etree.stack([
        {'a': np.array([1])},
        {'a': np.array([2])},
        {'a': np.array([3])},
    ]) == {
        'a': np.array([[1], [2], [3]])
    }
    ```

    Args:
      trees: The list of tree to stack

    Returns:
      Tree of arrays.
    """
    return self.backend.map(_stack, *trees)

  def spec_like(
      self,
      tree: Tree[Array],
      *,
      ignore_other: bool = True,
  ) -> Tree[enp.ArraySpec]:
    """Inspect a tree of array, works with any array type.

    Example:

    ```python
    model = MyModel()
    variables = model.init(jax.random.PRNGKey(0), x)

    # Inspect the `variables` tree structures
    print(etree.spec_like(variables))
    ```

    Args:
      tree: The tree of array
      ignore_other: If `True`, non-array are forwarded as-is.

    Returns:
      The tree of `enp.ArraySpec`.
    """

    def _to_spec_array(array):
      if not enp.ArraySpec.is_array(array):
        if ignore_other:
          return array
        else:
          raise TypeError(f'Unknown array type: {type(array)}')
      else:
        return enp.ArraySpec.from_array(array)

    return self.backend.map(_to_spec_array, tree)


def _stack(*arrs: Array) -> Array:
  """Stack arrays together."""
  xnp = enp.lazy.get_xnp(arrs[0])
  return xnp.stack(arrs)