Spaces:
Building
Building
# Copyright 2024 The etils Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Common geometric utils.""" | |
from __future__ import annotations | |
from etils.enp import checking | |
from etils.enp import compat | |
from etils.enp import numpy_utils | |
from etils.enp.typing import FloatArray | |
def batch_dot( | |
x0: FloatArray['... n'], | |
x1: FloatArray['... n'], | |
*, | |
keepdims: bool = False, | |
xnp: numpy_utils.NpModule = ..., | |
) -> FloatArray['... 1?']: | |
"""Dot product on the last dimension, with broadcasting support. | |
Contrary to `np.dot`, the behavior is consistent for 1-dim vs n-dim (while | |
dot act as matmul). | |
First dimensions are always broadcasted. | |
Args: | |
x0: Vector array | |
x1: Vector array | |
keepdims: If True, returns `FloatArray['... 1']` | |
xnp: Numpy module to use | |
Returns: | |
The dot product along the last axis. | |
""" | |
# Weirdly, this doesn't seem np has a native ops for this: | |
# * `np.dot`: 1-D vs 2-D behave differently | |
# * `np.matmul`: Different op (`kj,jn` vs `...k,...k`) | |
# * `np.tensordot`: Weird broadcasting | |
# * `np.inner`: Weird broadcasting | |
y = xnp.einsum('...m,...m->...', x0, x1) | |
return y[..., None] if keepdims else y | |
def angle_between( | |
x0: FloatArray[..., 3], | |
x1: FloatArray[..., 3], | |
*, | |
keepdims: bool = False, | |
xnp: numpy_utils.NpModule = ..., | |
) -> FloatArray['... 1?']: | |
"""Compute angle between 2 vectors, unsigned.""" | |
a0 = compat.norm(xnp.cross(x0, x1), axis=-1, keepdims=keepdims) | |
a1 = batch_dot(x0, x1, keepdims=keepdims) | |
angle = xnp.arctan2(a0, a1) | |
return angle | |
def project_onto_vector( | |
u: FloatArray[..., 3], | |
v: FloatArray[..., 3], | |
) -> FloatArray[..., 3]: | |
"""Project `u` onto `v`.""" | |
return ( | |
batch_dot(u, v, keepdims=True) | |
/ compat.norm(v, axis=-1, keepdims=True) ** 2 | |
* v | |
) | |
def project_onto_plane( | |
u: FloatArray[..., 3], | |
n: FloatArray[..., 3], | |
) -> FloatArray[..., 3]: | |
"""Project `u` onto the plane `n` (orthogonal vector).""" | |
return u - project_onto_vector(u, n) | |