# This is a sample Python script. # Press ⌃R to execute it or replace it with your code. # Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings. import gradio as gr from transformers import pipeline from transformers import Conversation def chatwith_blenderbot400m(): chatbot = pipeline(task="conversational", model="facebook/blenderbot-400M-distill") user_message = "What are some fun activities I can do in the winter?" conversation = Conversation(user_message) print(conversation) print(type(conversation)) conversation = chatbot(conversation) print(conversation) conversation.add_message( {"role": "user", "content": "I would like to do outdoor activities. Which activities can I do?"}) conversation = chatbot(conversation) print(conversation) def chatwith_qwen2_1point5b_instruct(): chatbot = pipeline(task="text-generation", model="Qwen/Qwen2-1.5B-Instruct") messages = [{"role": "user", "content": "What are some fun activities I can do in the winter?"}] messages = chatbot(messages, max_new_tokens=50)[0]["generated_text"] print(messages) messages.append({"role": "user", "content": "I would like to do outdoor activities. Which activities can I do?"}) print(messages) messages = chatbot(messages, max_new_tokens=50)[0]["generated_text"] print(messages) def chatwith_qwen2_1point5b_instruct(prompt, max_newtokens): print("Aaaaa") chatbot = pipeline(task="text-generation", model="Qwen/Qwen2-1.5B-Instruct") messages = [{"role": "user", "content": prompt}] messages = chatbot(messages, max_new_tokens=max_newtokens)[0]["generated_text"] return messages #chatwith_blenderbot400m() #chatwith_qwen2_1point5b_instruct() # prompt = "What are some fun activities I can do in the winter?" # max_newtokens = 2 # print(chatwith_qwen2_1point5b_instruct(prompt, max_newtokens)) # def greet(name, intensity): # return "Hello........., " + name + "!" * int(intensity) demo = gr.Interface( fn=chatwith_qwen2_1point5b_instruct, inputs=["text", "slider"], outputs=["text"], ) demo.launch(share=False)