# Copyright 2024 The etils Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test utils.""" from __future__ import annotations from typing import Callable, Iterable, Optional, TypeVar from etils.enp import numpy_utils import numpy as np import pytest lazy = numpy_utils.lazy _FnT = TypeVar('_FnT') @pytest.fixture(scope='module', autouse=True) def set_tnp() -> None: """Enable numpy behavior (for `tensorflow`). Note: The fixture has to be explicitly declared in the `_test.py` file where it is used. This can be done by assigning `set_tnp = enp.testing.set_tnp`. """ # This is required to have TF follow the same casting rules as numpy lazy.tnp.experimental_enable_numpy_behavior(prefer_float32=True) def parametrize_xnp( *, with_none: bool = False, restrict: Optional[Iterable[str]] = None, skip: Optional[Iterable[str]] = None, ) -> Callable[[_FnT], _FnT]: """Parametrize over the numpy modules. Args: with_none: If `True`, also yield `None` among the values (to test `list`) restrict: If given, only test the given module (e.g. `restrict=['jnp']`) skip: If given, skip the given module from test (e.g. `skip=['torch']`) Returns: The fixture to apply to the `def test_xyz()` function """ name_to_modules = { 'np': np, 'jnp': lazy.jnp, 'tnp': lazy.tnp, 'torch': lazy.torch, } keep = _normalize_set( restrict, default=name_to_modules, valid=name_to_modules ) skip = _normalize_set(skip, default=[], valid=name_to_modules) name_to_modules = { k: v for k, v in name_to_modules.items() if k not in skip and k in keep } if with_none: # Allow to test without numpy module: `x = [1, 2]` vs `x = np.array([1, 2]` name_to_modules['no_np'] = None return pytest.mark.parametrize( 'xnp', list(name_to_modules.values()), ids=list(name_to_modules.keys()), ) def _normalize_set( values: Iterable[str], default: Iterable[str], valid: Iterable[str] ) -> set[str]: # Normalize str -> list (e.g. skip='torch') values = [values] if isinstance(values, str) else values values = set(default if values is None else values) if extra_elements := (values - set(valid)): raise ValueError(f'Unexpected numpy module: {extra_elements}') return values