Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import re | |
import argparse | |
import tarfile | |
from concurrent.futures import ThreadPoolExecutor | |
from tqdm import tqdm | |
import pandas as pd | |
import huggingface_hub | |
from utils import get_file_hash | |
def add_args(parser: argparse.ArgumentParser): | |
pass | |
def get_metadata(**kwargs): | |
metadata = pd.read_csv("hf://datasets/JeffreyXiang/TRELLIS-500K/HSSD.csv") | |
return metadata | |
def download(metadata, output_dir, **kwargs): | |
os.makedirs(os.path.join(output_dir, 'raw'), exist_ok=True) | |
# check login | |
try: | |
huggingface_hub.whoami() | |
except: | |
print("\033[93m") | |
print("Haven't logged in to the Hugging Face Hub.") | |
print("Visit https://huggingface.co/settings/tokens to get a token.") | |
print("\033[0m") | |
huggingface_hub.login() | |
try: | |
huggingface_hub.hf_hub_download(repo_id="hssd/hssd-models", filename="README.md", repo_type="dataset") | |
except: | |
print("\033[93m") | |
print("Error downloading HSSD dataset.") | |
print("Check if you have access to the HSSD dataset.") | |
print("Visit https://huggingface.co/datasets/hssd/hssd-models for more information") | |
print("\033[0m") | |
downloaded = {} | |
metadata = metadata.set_index("file_identifier") | |
with ThreadPoolExecutor(max_workers=os.cpu_count()) as executor, \ | |
tqdm(total=len(metadata), desc="Downloading") as pbar: | |
def worker(instance: str) -> str: | |
try: | |
huggingface_hub.hf_hub_download(repo_id="hssd/hssd-models", filename=instance, repo_type="dataset", local_dir=os.path.join(output_dir, 'raw')) | |
sha256 = get_file_hash(os.path.join(output_dir, 'raw', instance)) | |
pbar.update() | |
return sha256 | |
except Exception as e: | |
pbar.update() | |
print(f"Error extracting for {instance}: {e}") | |
return None | |
sha256s = executor.map(worker, metadata.index) | |
executor.shutdown(wait=True) | |
for k, sha256 in zip(metadata.index, sha256s): | |
if sha256 is not None: | |
if sha256 == metadata.loc[k, "sha256"]: | |
downloaded[sha256] = os.path.join('raw', k) | |
else: | |
print(f"Error downloading {k}: sha256s do not match") | |
return pd.DataFrame(downloaded.items(), columns=['sha256', 'local_path']) | |
def foreach_instance(metadata, output_dir, func, max_workers=None, desc='Processing objects') -> pd.DataFrame: | |
import os | |
from concurrent.futures import ThreadPoolExecutor | |
from tqdm import tqdm | |
# load metadata | |
metadata = metadata.to_dict('records') | |
# processing objects | |
records = [] | |
max_workers = max_workers or os.cpu_count() | |
try: | |
with ThreadPoolExecutor(max_workers=max_workers) as executor, \ | |
tqdm(total=len(metadata), desc=desc) as pbar: | |
def worker(metadatum): | |
try: | |
local_path = metadatum['local_path'] | |
sha256 = metadatum['sha256'] | |
file = os.path.join(output_dir, local_path) | |
record = func(file, sha256) | |
if record is not None: | |
records.append(record) | |
pbar.update() | |
except Exception as e: | |
print(f"Error processing object {sha256}: {e}") | |
pbar.update() | |
executor.map(worker, metadata) | |
executor.shutdown(wait=True) | |
except: | |
print("Error happened during processing.") | |
return pd.DataFrame.from_records(records) | |