Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import json | |
import argparse | |
import numpy as np | |
import pandas as pd | |
from tqdm import tqdm | |
from easydict import EasyDict as edict | |
from concurrent.futures import ThreadPoolExecutor | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--output_dir', type=str, required=True, | |
help='Directory to save the metadata') | |
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None, | |
help='Filter objects with aesthetic score lower than this value') | |
parser.add_argument('--model', type=str, default='dinov2_vitl14_reg_slat_enc_swin8_B_64l8_fp16', | |
help='Latent model to use') | |
parser.add_argument('--num_samples', type=int, default=50000, | |
help='Number of samples to use for calculating stats') | |
opt = parser.parse_args() | |
opt = edict(vars(opt)) | |
# get file list | |
if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')): | |
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv')) | |
else: | |
raise ValueError('metadata.csv not found') | |
if opt.filter_low_aesthetic_score is not None: | |
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score] | |
metadata = metadata[metadata[f'latent_{opt.model}'] == True] | |
sha256s = metadata['sha256'].values | |
sha256s = np.random.choice(sha256s, min(opt.num_samples, len(sha256s)), replace=False) | |
# stats | |
means = [] | |
mean2s = [] | |
with ThreadPoolExecutor(max_workers=16) as executor, \ | |
tqdm(total=len(sha256s), desc="Extracting features") as pbar: | |
def worker(sha256): | |
try: | |
feats = np.load(os.path.join(opt.output_dir, 'latents', opt.model, f'{sha256}.npz')) | |
feats = feats['feats'] | |
means.append(feats.mean(axis=0)) | |
mean2s.append((feats ** 2).mean(axis=0)) | |
pbar.update() | |
except Exception as e: | |
print(f"Error extracting features for {sha256}: {e}") | |
pbar.update() | |
executor.map(worker, sha256s) | |
executor.shutdown(wait=True) | |
mean = np.array(means).mean(axis=0) | |
mean2 = np.array(mean2s).mean(axis=0) | |
std = np.sqrt(mean2 - mean ** 2) | |
print('mean:', mean) | |
print('std:', std) | |
with open(os.path.join(opt.output_dir, 'latents', opt.model, 'stats.json'), 'w') as f: | |
json.dump({ | |
'mean': mean.tolist(), | |
'std': std.tolist(), | |
}, f, indent=4) | |