Update app.py
Browse files
app.py
CHANGED
@@ -9,15 +9,18 @@ from pytorch_lightning.callbacks import ModelCheckpoint
|
|
9 |
from pytorch_lightning.loggers import TensorBoardLogger
|
10 |
from datasets.dataset_dict import DatasetDict
|
11 |
from transformers import AdamW, T5ForConditionalGeneration, T5TokenizerFast
|
|
|
|
|
|
|
|
|
12 |
import warnings
|
13 |
warnings.simplefilter('ignore')
|
14 |
|
15 |
-
from summarizer import SummarizerModel
|
16 |
-
from transformers import AutoTokenizer
|
17 |
MODEL_NAME = 'Salesforce/codet5-base-multi-sum'
|
18 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
19 |
model = SummarizerModel(MODEL_NAME)
|
20 |
-
model.load_state_dict(torch.load('codet5-base-1_epoch-val_loss-0.80.pth'))
|
|
|
21 |
|
22 |
def summarize(text: str,
|
23 |
tokenizer = tokenizer,
|
@@ -26,7 +29,7 @@ def summarize(text: str,
|
|
26 |
Summarizes a given code in text format.
|
27 |
Args:
|
28 |
text: The code in string format that needs to be summarized.
|
29 |
-
tokenizer: The
|
30 |
trained_model: A SummarizerModel fine-tuned instance of
|
31 |
T5 model family.
|
32 |
"""
|
@@ -53,9 +56,20 @@ def summarize(text: str,
|
|
53 |
for gen_id in generated_ids]
|
54 |
return "".join(preds)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
outputs = gr.outputs.Textbox()
|
57 |
-
iface = gr.Interface(fn=
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
9 |
from pytorch_lightning.loggers import TensorBoardLogger
|
10 |
from datasets.dataset_dict import DatasetDict
|
11 |
from transformers import AdamW, T5ForConditionalGeneration, T5TokenizerFast
|
12 |
+
from tqdm.auto import tqdm
|
13 |
+
from models.summarizer import SummarizerModel
|
14 |
+
from transformers import AutoTokenizer
|
15 |
+
from sentence_transformers import SentenceTransformer
|
16 |
import warnings
|
17 |
warnings.simplefilter('ignore')
|
18 |
|
|
|
|
|
19 |
MODEL_NAME = 'Salesforce/codet5-base-multi-sum'
|
20 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
21 |
model = SummarizerModel(MODEL_NAME)
|
22 |
+
model.load_state_dict(torch.load('/content/drive/MyDrive/PlageBERT/Models/codet5-base-1_epoch-val_loss-0.80.pth'))
|
23 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
24 |
|
25 |
def summarize(text: str,
|
26 |
tokenizer = tokenizer,
|
|
|
29 |
Summarizes a given code in text format.
|
30 |
Args:
|
31 |
text: The code in string format that needs to be summarized.
|
32 |
+
tokenizer: The tokeniszer used in the trained T5 model.
|
33 |
trained_model: A SummarizerModel fine-tuned instance of
|
34 |
T5 model family.
|
35 |
"""
|
|
|
56 |
for gen_id in generated_ids]
|
57 |
return "".join(preds)
|
58 |
|
59 |
+
def find_similarity_score(code_1, code_2, model = embedding_model):
|
60 |
+
summary_code_1 = summarize(text = code_1)
|
61 |
+
summary_code_2 = summarize(text = code_2)
|
62 |
+
embedding_1 = model.encode(summary_code_1)
|
63 |
+
embedding_2 = model.encode(summary_code_2)
|
64 |
+
score = np.dot(embedding_1, embedding_2)/(np.linalg.norm(embedding_1) * np.linalg.norm(embedding_2))
|
65 |
+
return summary_code_1, summary_code_2, round(score, 2)
|
66 |
+
|
67 |
outputs = gr.outputs.Textbox()
|
68 |
+
iface = gr.Interface(fn=find_similarity_score,
|
69 |
+
inputs=[gr.Textbox(label = 'First Code snippet'),
|
70 |
+
gr.Textbox(label = 'Second Code snippet')],
|
71 |
+
outputs=[gr.Textbox(label = 'Summary of first Code snippet'),
|
72 |
+
gr.Textbox(label = 'Summary of second Code snippet'),
|
73 |
+
gr.Textbox(label = 'The similarity score')],
|
74 |
+
description='The similarity score')
|
75 |
+
iface.launch()
|