File size: 20,870 Bytes
15e0fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d7b23a
2188f9c
15e0fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6da495
 
15e0fb9
 
b6da495
 
 
15e0fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6da495
 
15e0fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6da495
 
15e0fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 25 21:06:22 2022

@author: ayush
"""

# Import the Libraries
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go

import yfinance as yf
import datetime as dttm

st.set_page_config(page_title='Stock Market Forecasting', page_icon='stock2.jpg')
st.image('stock2.jpg','Stock Market Forecasting')
st.header('Stock Market Forecasting')
st.write('---')
st.sidebar.header('User Input Parameters')

ipt = st.sidebar.selectbox( label ="Take Input DataSet From",
    options=['Yfinance'])
if ipt == 'Yfinance':
    st.sidebar.write('**1).Stock Name**')
    stick_name = st.sidebar.text_input('Enter the Name of Stock as in yfinance',
                                       value= 'NESTLEIND.NS'
                                       )
    st.sidebar.write('**2).Starting Date and Ending Date used for Training Data**')
    startDate = st.sidebar.date_input('Starting Date',
                                       value= dttm.date(2011, 1, 1),
                                       min_value = dttm.date(2010,1,1)
                                       )
    endDate = st.sidebar.date_input('Ending Date', 
                                     value= dttm.date(2022, 7, 1), 
                                     min_value = dttm.date(2010,1,1)
                                     )
    n = st.sidebar.number_input("Approx Number of Day's you want to Forecaste",
                               min_value = 1,
                               max_value = 30,
                               value = 10)
else:
    st.error('You Select a wrong option')

if 'start' not in st.session_state:
    st.session_state['start'] = False
    
start = st.sidebar.checkbox('check to start', value = st.session_state['start'])


if start:
    st.session_state['start'] = True
    
else:
    st.session_state['start'] = False

if 'stock_past' not in st.session_state:
    st.session_state['stock_past'] = None
result = st.sidebar.button('Clear the Session State')
if result:
    for key in st.session_state.keys():
        del st.session_state[key]
    
if 'start' not in st.session_state:
    st.session_state['start'] = False

if st.session_state['start']==True:
    # Extract Dataset from yfinance
    if ipt == 'Yfinance':
        
        GetData = yf.Ticker(stick_name)
        
        yf_data = pd.DataFrame(GetData.history(start=startDate, end=endDate))
        
        st.subheader('Input DataFrame')
        st.write(stick_name,'*Stock DataFrame*')
        st.dataframe(yf_data)
        
        if yf_data.empty:
            st.error('No Internet Connection')
            yf_data = None
    
    
    if 'stock_present' not in st.session_state:
        st.session_state['stock_present'] = stick_name
        
    st.session_state['stock_present'] = stick_name
    
    
    st.subheader('Visualisation')
    
    # Different types of plots
    st.sidebar.header('Visualisation')
    #Visualisation
    chart_select = st.sidebar.selectbox(
        label ="Type of chart",
        options=['Lineplots','Scatterplots','Histogram']
    )
    
    
    numeric_columns = list(yf_data.select_dtypes(['float','int']).columns)
    numeric_columns.sort()
    
    if chart_select == 'Scatterplots':
        st.sidebar.subheader('Scatterplot Settings')
        try:
            y_values = st.sidebar.selectbox('Y axis',options=numeric_columns)
            
            plot = px.scatter(data_frame=yf_data,y=y_values,
                              title=str('Scatter Plot for '+y_values+' column'))
            st.write(plot)
        except Exception as e:
            print(e)
    if chart_select == 'Histogram':
        st.sidebar.subheader('Histogram Settings')
        try:
            x_values = st.sidebar.selectbox('X axis',options=numeric_columns)
            plot = px.histogram(data_frame=yf_data,x=x_values,marginal="box",
                                title=str('Histogram Plot for '+y_values+' column'))
            st.write(plot)
        except Exception as e:
            print(e)
    if chart_select == 'Lineplots':
        st.sidebar.subheader('Lineplots Settings')
        try:
            y_values = st.sidebar.selectbox('Y axis',options=numeric_columns)
            plot = px.line(yf_data,y=y_values,
                           title=str('Line Plot for '+y_values+' column'))
            st.write(plot)
        except Exception as e:
            print(e)
    
    
    # Final Dataset for Model Building i.e. selecting only "close" column
    #st.write(numeric_columns)
    if "Close" in numeric_columns:
        final_data = pd.DataFrame(yf_data.Close)
        final_data = final_data.sort_index(ascending=True)
        final_data.rename(columns={'Close': 'Close'},inplace = True)
        
    elif "close" in numeric_columns:
        final_data = pd.DataFrame(yf_data.close)
        final_data = final_data.sort_index(ascending=True)
        final_data.rename(columns={'close': 'Close'},inplace = True)
        
    elif "CLOSE" in numeric_columns:
        final_data = pd.DataFrame(yf_data.CLOSE)
        final_data = final_data.sort_index(ascending=True)
        final_data.rename(columns={'CLOSE': 'Close'},inplace = True)
        
    else:
        final_data = None
        st.subheader('Close Column is not Present in the File, Please Check the file and reupload')
        
    st.subheader('DataSet used for Training')
    st.write(final_data)
    
    try:
        # Setting Frequency of Close column
        training_data = final_data.copy()
        training_data = training_data.asfreq('B')
        training_data.ffill(inplace=True)
        #st.write(data)
        #st.write(data.shape)
        #st.write(data.isnull().sum())
        
    except:
        training_data = None
        st.error('Please Check the settings, You have not choose the appropriate option or You have not upload the File or not in write formate')
    
    # Error function 
    from sklearn.metrics import mean_squared_error
    from sklearn.metrics import mean_absolute_error
    
    # Data Transformation=========================================================================================================================
    from sklearn.preprocessing import MinMaxScaler
    scaler = MinMaxScaler(feature_range=(0.001,1))
    full_data_minmax = scaler.fit_transform(np.array(training_data).reshape(-1,1))
    #st.write(train_data_minmax)
    #st.write(train_data.index)
        
    full_data_minmax = pd.DataFrame(full_data_minmax, columns = ['close'])
    full_data_minmax.index = training_data.index
    #st.write(full_data_minmax)
        
        
    # Spliting the DataSet into Train and Test
    train_data = training_data[:int(len(final_data)*0.8)]
    test_data = training_data[int(len(final_data)*0.8):]
    
    train_data_minmax = scaler.fit_transform(np.array(train_data).reshape(-1,1))
    train_data_minmax = pd.DataFrame(train_data_minmax, columns = ['close'])
    train_data_minmax.index = train_data.index
        
        
    #Model Building===============================================================================================================================
        
    from sktime.forecasting.compose import AutoEnsembleForecaster
    from sktime.forecasting.exp_smoothing import ExponentialSmoothing
    from sktime.forecasting.fbprophet import Prophet
    import holidays
    import random
        
    # Prophet Model-------------------------------------------------------------------------------------------------------------------------------
        
    # Holiday
    holiday = pd.DataFrame([])
        
    for date, name in sorted(holidays.India(years=[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022]).items()):
        holiday = holiday.append(pd.DataFrame({'ds': date, 'holiday': "India_Holidays"}, index=[0]), ignore_index=True)
    holiday['ds'] = pd.to_datetime(holiday['ds'], format='%Y-%m-%d', errors='ignore')
        
    # HyperParameter Tunning
    if st.session_state['stock_present']!= st.session_state['stock_past']:
        
        st.write('**Hypreparameter Tunning is Done only once for every stock, So be patient**')   
        st.write('**Hypreparameter Tunning is Started for Prophet Model**')
        from sklearn.model_selection import ParameterGrid
        params_grid = {'changepoint_prior_scale':[10,25],
                           'n_changepoints' : [10,25],
                           'seasonality_prior_scale':[0.05,1]}
        Pro_model_parameters = pd.DataFrame(columns = ['Parameters','MSE','RMSE'])
            
        grid = ParameterGrid(params_grid)
        
        Pro_bar = st.progress(0)
        
        i = 1
        for p in grid:
            test = pd.DataFrame()
        #    print(i,' ',p)
            random.seed(0)
            train_model =Prophet(freq='B', 
                                 changepoint_prior_scale = p['changepoint_prior_scale'],
                                 n_changepoints = p['n_changepoints'],
                                 seasonality_mode = 'multiplicative',
                                 seasonality_prior_scale=p['seasonality_prior_scale'],
                                 weekly_seasonality=False,
                                 daily_seasonality = False,
                                 yearly_seasonality = True,
                                 add_country_holidays={'country_name': 'India'}, 
                                 holidays=holiday)
            train_model.fit(train_data_minmax)
            fh = list(range(1,int(len(test_data))+1))
            test_predictions = train_model.predict(fh=fh)
            test_predictions=scaler.inverse_transform(test_predictions)
            mse = mean_squared_error(test_data, test_predictions)
            rmse = np.sqrt(mse)
            Pro_bar.progress(i/len(grid))
            i = i+1
            #print('Root Mean Squre Error(RMSE)------------------------------------',rmse)
            Pro_model_parameters = Pro_model_parameters.append({'Parameters':p, 'MSE':mse, 'RMSE':rmse},ignore_index=True)
            
            
        Pro_parameters = Pro_model_parameters.sort_values(by=['RMSE'])
        Pro_parameters = Pro_parameters.reset_index(drop=True)
        #st.write(Pro_parameters)
        st.write('**Hypreparameter Tunning is Done for Prophet Model**')
            
        if 'changepoint_prior_scale' not in st.session_state:
            st.session_state['changepoint_prior_scale'] = Pro_parameters['Parameters'][0]['changepoint_prior_scale']
            
        else:
            pass
        st.session_state['changepoint_prior_scale'] = Pro_parameters['Parameters'][0]['changepoint_prior_scale']
            
        if 'n_changepoints' not in st.session_state:
            st.session_state['n_changepoints'] = Pro_parameters['Parameters'][0]['n_changepoints']
                
        else:
            pass
        st.session_state['n_changepoints'] = Pro_parameters['Parameters'][0]['n_changepoints']
            
        if 'seasonality_prior_scale' not in st.session_state:
            st.session_state['seasonality_prior_scale'] = Pro_parameters['Parameters'][0]['seasonality_prior_scale']
                
        else:
            pass
        st.session_state['seasonality_prior_scale'] = Pro_parameters['Parameters'][0]['seasonality_prior_scale']
        
    else:
        pass
        
    Pro_model = Prophet(freq='B', seasonality_mode='multiplicative', 
                        changepoint_prior_scale=st.session_state['changepoint_prior_scale'], 
                        n_changepoints=st.session_state['n_changepoints'], 
                        seasonality_prior_scale=st.session_state['seasonality_prior_scale'], 
                        add_country_holidays={'country_name': 'India'}, verbose=10,
                        holidays=holiday,
                        yearly_seasonality=True, weekly_seasonality=False , daily_seasonality=False)
    #Pro_model.fit(train_data_minmax)
    
    #fh = list(range(1,int(len(test_data_minmax))+1))
    # fh1 = pd.DatetimeIndex(np.array(test_data.index))
    # fh1
    #test_predictions_minmax = Pro_model.predict(fh=fh)
    #st.write(test_predictions_minmax)
        
    #test_predictions=scaler.inverse_transform(test_predictions_minmax)
    #test_predictions = pd.DataFrame(test_predictions, columns = ['Close'])
    #test_predictions.index = test_data.index
    #st.write(test_predictions)
        
        
        
    # Exponential Smoothing Model-----------------------------------------------------------------------------------------------------------------
        
        
    # HyperParameter Tunning
    if st.session_state['stock_present']!= st.session_state['stock_past']:
            
        st.write('**Hypreparameter Tunning is Started for Exponential Smoothing Model**')
        from sklearn.model_selection import ParameterGrid
        params_grid = {'trend':["add", "mul"],
                       'seasonal' : ["add", "mul"]
                       }
        Expo_model_parameters = pd.DataFrame(columns = ['Parameters','MSE','RMSE'])
            
        grid = ParameterGrid(params_grid)
        
        Expo_bar = st.progress(0)
        i = 1
        for p in grid:
            test = pd.DataFrame()
        #    print(i,' ',p)
            random.seed(0)
            train_model = ExponentialSmoothing(trend=p['trend'],
                                               seasonal=p['seasonal'],
                                               sp=262,
                                               damped_trend=False)
            train_model.fit(train_data_minmax)
            fh = list(range(1,int(len(test_data))+1))
            test_predictions = train_model.predict(fh=fh)
            test_predictions=scaler.inverse_transform(test_predictions)
            mse = mean_squared_error(test_data, test_predictions)
            rmse = np.sqrt(mse)
            Expo_bar.progress(i/len(grid))
            i = i+1
            #    print('Root Mean Squre Error(RMSE)------------------------------------',rmse)
            Expo_model_parameters = Expo_model_parameters.append({'Parameters':p, 'MSE':mse, 'RMSE':rmse},ignore_index=True)
        
        
        Expo_parameters = Expo_model_parameters.sort_values(by=['RMSE'])
        Expo_parameters = Expo_parameters.reset_index(drop=True)
        #st.write(Expo_parameters)
        st.write('**Hypreparameter Tunning is Done for Exponential Smoothing Model**')
        
        if 'trend' not in st.session_state:
            st.session_state['trend'] = Expo_parameters['Parameters'][0]['trend']
            
        else:
            pass
        st.session_state['trend'] = Expo_parameters['Parameters'][0]['trend']
        
        if 'seasonal' not in st.session_state:
            st.session_state['seasonal'] = Expo_parameters['Parameters'][0]['seasonal']
            
        else:
            pass
        st.session_state['seasonal'] = Expo_parameters['Parameters'][0]['seasonal']
    
    else:
        pass
        
    Expo_model = ExponentialSmoothing(trend=st.session_state['trend'],
                                      seasonal=st.session_state['seasonal'],
                                      sp=262,
                                      damped_trend=False)
    #Expo_model.fit(train_data_minmax)
        
    #fh = list(range(1,int(len(test_data_minmax))+1))
    # fh1 = pd.DatetimeIndex(np.array(test_data.index))
    # fh1
    #test_predictions_minmax = Expo_model.predict(fh=fh)
    #st.write(test_predictions_minmax)
    
    #test_predictions=scaler.inverse_transform(test_predictions_minmax)
    #test_predictions = pd.DataFrame(test_predictions, columns = ['Close'])
    #test_predictions.index = test_data.index
    #st.write(test_predictions)
        
        
    # AutoEnsembleForecaster Model----------------------------------------------------------------------------------------------------------------
        
    st.subheader('Model Building')
    st.write('**Validating the final model**')
    forecasters = [
         ("prophet" , Pro_model),
         ("expo" , Expo_model)
        ]
        
    Ensmodel = AutoEnsembleForecaster(forecasters=forecasters, n_jobs=-1, random_state=42)
    Ensmodel.fit(train_data_minmax)
        
        
    fh = list(range(1,int(len(test_data))+1))
    # fh1 = pd.DatetimeIndex(np.array(test_data.index))
    # fh1
    test_predictionsEns = Ensmodel.predict(fh=fh)
    #st.write(test_predictionsEns)
        
        
    test_predictions=scaler.inverse_transform(test_predictionsEns)
    test_predictions = pd.DataFrame(test_predictions, columns = ['Close'])
    test_predictions.index = test_data.index
    #st.write(test_predictions)
    
    mse = mean_squared_error(test_data, test_predictions)
    rmse = np.sqrt(mse)
    mae = mean_absolute_error(test_data, test_predictions)
    mape = np.mean(np.abs((test_data-test_predictions)/test_data))*100
    errors = {'MSE':mse, 'RMSE':rmse, 'MAE':mae, 'MAPE':mape}
    errors_df = pd.DataFrame(errors)
        
        
    fig = go.Figure()
       
    fig.add_trace(go.Scatter(x=train_data.index, y=train_data['Close'], mode='lines', name='TRAIN'))
    fig.add_trace(go.Scatter(x=test_data.index, y=test_data['Close'], mode='lines', name='TEST'))
    fig.add_trace(go.Scatter(x=test_predictions.index, y=test_predictions['Close'], mode='lines', name='PREDICTION'))
        
    fig.update_layout(title_text='Forecast vs Actuals', title_x=0.5)
        
    st.plotly_chart(fig)
    
    st.write(errors_df)
        
    st.write('**If you are satisfied with the Validation then Start the Forecast Or Reset the Session State and re-run the app for Hyperparameter Tunning**')
    
    
    numdays = st.number_input("Number of Day's you want to Forecaste",
                                  min_value = 1,
                                  max_value = n*3,
                                  value = n)
        
    if 'fr' not in st.session_state:
        st.session_state['fr'] = 0
            
    if st.session_state['stock_present']!= st.session_state['stock_past']:
        st.session_state['stock_past'] = st.session_state['stock_present']
        st.session_state['fr'] = 0
        
    frct = st.selectbox('Start the Forecast', options = ['No', 'Yes'],
                        index = st.session_state['fr'])
        
    if frct == 'Yes':
        st.subheader('Forecasting')
        st.session_state['fr'] = 1
        forecasters = [
                     ("prophet" , Pro_model),
                     ("expo" , Expo_model)
            ]
            
        st.write('Training the model')
        Ensmodel = AutoEnsembleForecaster(forecasters=forecasters, n_jobs=-1, random_state=42)
        Ensmodel.fit(full_data_minmax)
            
        st.write('Forecasting from trained model')
        prediction_list = [(pd.to_datetime(endDate) + dttm.timedelta(days=x)).date() for x in range(0,numdays)]
        prediction_list = pd.to_datetime(prediction_list)
        forecaste = pd.DataFrame(prediction_list, columns=['Date'])
        #st.write(forecaste)
        for_df = forecaste.set_index('Date')
        #st.write(for_df)
        for_df = for_df.asfreq('B')
        #n = int(len(for_df.index))
        #st.write(n)
            
            
        #fh = list(range(1,n+1))
        fh1 = pd.DatetimeIndex(np.array(for_df.index))
        # fh1
        final_predictions = Ensmodel.predict(fh=fh1)
        #st.write(final_predictions)
            
            
        final_predictions=scaler.inverse_transform(final_predictions)
        #st.write(final_predictions)
        for_df['Close'] = final_predictions
        st.markdown('### Forecast DataSet')
        st.write(for_df)
            
            
            
        fig = go.Figure()
        
        fig.add_trace(go.Scatter(x=training_data.index, y=training_data['Close'], mode='lines', name='TRAIN'))
        fig.add_trace(go.Scatter(x=for_df.index, y=for_df['Close'], mode='lines', name='Forecast'))
        fig.update_layout(title_text='Final Forecast', title_x=0.5)
        
        st.write(fig)

            
    elif frct == 'No':
        st.session_state['fr'] = 0
        
    else:
        pass
            
        
        
    if st.sidebar.button('Made By'):
        name = ['Ayush Patidar', 'Aditya Rao', 'Farzan Nawaz', 
                'Nikhil Hosamani', 'Lakshmi Supriya', 'Bhavitha Mitte', 'Aadarsh Asthana']
        gmail = ['[email protected]', '[email protected]', '[email protected]',
                 '[email protected]', '[email protected]', '[email protected]',
                 '[email protected]']
        dt = {'Name':name, 'Contact Detail': gmail}
        made = pd.DataFrame(dt)
        st.write(made)

else:
    pass