Spaces:
Runtime error
Runtime error
File size: 20,870 Bytes
15e0fb9 3d7b23a 2188f9c 15e0fb9 b6da495 15e0fb9 b6da495 15e0fb9 b6da495 15e0fb9 b6da495 15e0fb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 25 21:06:22 2022
@author: ayush
"""
# Import the Libraries
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import yfinance as yf
import datetime as dttm
st.set_page_config(page_title='Stock Market Forecasting', page_icon='stock2.jpg')
st.image('stock2.jpg','Stock Market Forecasting')
st.header('Stock Market Forecasting')
st.write('---')
st.sidebar.header('User Input Parameters')
ipt = st.sidebar.selectbox( label ="Take Input DataSet From",
options=['Yfinance'])
if ipt == 'Yfinance':
st.sidebar.write('**1).Stock Name**')
stick_name = st.sidebar.text_input('Enter the Name of Stock as in yfinance',
value= 'NESTLEIND.NS'
)
st.sidebar.write('**2).Starting Date and Ending Date used for Training Data**')
startDate = st.sidebar.date_input('Starting Date',
value= dttm.date(2011, 1, 1),
min_value = dttm.date(2010,1,1)
)
endDate = st.sidebar.date_input('Ending Date',
value= dttm.date(2022, 7, 1),
min_value = dttm.date(2010,1,1)
)
n = st.sidebar.number_input("Approx Number of Day's you want to Forecaste",
min_value = 1,
max_value = 30,
value = 10)
else:
st.error('You Select a wrong option')
if 'start' not in st.session_state:
st.session_state['start'] = False
start = st.sidebar.checkbox('check to start', value = st.session_state['start'])
if start:
st.session_state['start'] = True
else:
st.session_state['start'] = False
if 'stock_past' not in st.session_state:
st.session_state['stock_past'] = None
result = st.sidebar.button('Clear the Session State')
if result:
for key in st.session_state.keys():
del st.session_state[key]
if 'start' not in st.session_state:
st.session_state['start'] = False
if st.session_state['start']==True:
# Extract Dataset from yfinance
if ipt == 'Yfinance':
GetData = yf.Ticker(stick_name)
yf_data = pd.DataFrame(GetData.history(start=startDate, end=endDate))
st.subheader('Input DataFrame')
st.write(stick_name,'*Stock DataFrame*')
st.dataframe(yf_data)
if yf_data.empty:
st.error('No Internet Connection')
yf_data = None
if 'stock_present' not in st.session_state:
st.session_state['stock_present'] = stick_name
st.session_state['stock_present'] = stick_name
st.subheader('Visualisation')
# Different types of plots
st.sidebar.header('Visualisation')
#Visualisation
chart_select = st.sidebar.selectbox(
label ="Type of chart",
options=['Lineplots','Scatterplots','Histogram']
)
numeric_columns = list(yf_data.select_dtypes(['float','int']).columns)
numeric_columns.sort()
if chart_select == 'Scatterplots':
st.sidebar.subheader('Scatterplot Settings')
try:
y_values = st.sidebar.selectbox('Y axis',options=numeric_columns)
plot = px.scatter(data_frame=yf_data,y=y_values,
title=str('Scatter Plot for '+y_values+' column'))
st.write(plot)
except Exception as e:
print(e)
if chart_select == 'Histogram':
st.sidebar.subheader('Histogram Settings')
try:
x_values = st.sidebar.selectbox('X axis',options=numeric_columns)
plot = px.histogram(data_frame=yf_data,x=x_values,marginal="box",
title=str('Histogram Plot for '+y_values+' column'))
st.write(plot)
except Exception as e:
print(e)
if chart_select == 'Lineplots':
st.sidebar.subheader('Lineplots Settings')
try:
y_values = st.sidebar.selectbox('Y axis',options=numeric_columns)
plot = px.line(yf_data,y=y_values,
title=str('Line Plot for '+y_values+' column'))
st.write(plot)
except Exception as e:
print(e)
# Final Dataset for Model Building i.e. selecting only "close" column
#st.write(numeric_columns)
if "Close" in numeric_columns:
final_data = pd.DataFrame(yf_data.Close)
final_data = final_data.sort_index(ascending=True)
final_data.rename(columns={'Close': 'Close'},inplace = True)
elif "close" in numeric_columns:
final_data = pd.DataFrame(yf_data.close)
final_data = final_data.sort_index(ascending=True)
final_data.rename(columns={'close': 'Close'},inplace = True)
elif "CLOSE" in numeric_columns:
final_data = pd.DataFrame(yf_data.CLOSE)
final_data = final_data.sort_index(ascending=True)
final_data.rename(columns={'CLOSE': 'Close'},inplace = True)
else:
final_data = None
st.subheader('Close Column is not Present in the File, Please Check the file and reupload')
st.subheader('DataSet used for Training')
st.write(final_data)
try:
# Setting Frequency of Close column
training_data = final_data.copy()
training_data = training_data.asfreq('B')
training_data.ffill(inplace=True)
#st.write(data)
#st.write(data.shape)
#st.write(data.isnull().sum())
except:
training_data = None
st.error('Please Check the settings, You have not choose the appropriate option or You have not upload the File or not in write formate')
# Error function
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
# Data Transformation=========================================================================================================================
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0.001,1))
full_data_minmax = scaler.fit_transform(np.array(training_data).reshape(-1,1))
#st.write(train_data_minmax)
#st.write(train_data.index)
full_data_minmax = pd.DataFrame(full_data_minmax, columns = ['close'])
full_data_minmax.index = training_data.index
#st.write(full_data_minmax)
# Spliting the DataSet into Train and Test
train_data = training_data[:int(len(final_data)*0.8)]
test_data = training_data[int(len(final_data)*0.8):]
train_data_minmax = scaler.fit_transform(np.array(train_data).reshape(-1,1))
train_data_minmax = pd.DataFrame(train_data_minmax, columns = ['close'])
train_data_minmax.index = train_data.index
#Model Building===============================================================================================================================
from sktime.forecasting.compose import AutoEnsembleForecaster
from sktime.forecasting.exp_smoothing import ExponentialSmoothing
from sktime.forecasting.fbprophet import Prophet
import holidays
import random
# Prophet Model-------------------------------------------------------------------------------------------------------------------------------
# Holiday
holiday = pd.DataFrame([])
for date, name in sorted(holidays.India(years=[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022]).items()):
holiday = holiday.append(pd.DataFrame({'ds': date, 'holiday': "India_Holidays"}, index=[0]), ignore_index=True)
holiday['ds'] = pd.to_datetime(holiday['ds'], format='%Y-%m-%d', errors='ignore')
# HyperParameter Tunning
if st.session_state['stock_present']!= st.session_state['stock_past']:
st.write('**Hypreparameter Tunning is Done only once for every stock, So be patient**')
st.write('**Hypreparameter Tunning is Started for Prophet Model**')
from sklearn.model_selection import ParameterGrid
params_grid = {'changepoint_prior_scale':[10,25],
'n_changepoints' : [10,25],
'seasonality_prior_scale':[0.05,1]}
Pro_model_parameters = pd.DataFrame(columns = ['Parameters','MSE','RMSE'])
grid = ParameterGrid(params_grid)
Pro_bar = st.progress(0)
i = 1
for p in grid:
test = pd.DataFrame()
# print(i,' ',p)
random.seed(0)
train_model =Prophet(freq='B',
changepoint_prior_scale = p['changepoint_prior_scale'],
n_changepoints = p['n_changepoints'],
seasonality_mode = 'multiplicative',
seasonality_prior_scale=p['seasonality_prior_scale'],
weekly_seasonality=False,
daily_seasonality = False,
yearly_seasonality = True,
add_country_holidays={'country_name': 'India'},
holidays=holiday)
train_model.fit(train_data_minmax)
fh = list(range(1,int(len(test_data))+1))
test_predictions = train_model.predict(fh=fh)
test_predictions=scaler.inverse_transform(test_predictions)
mse = mean_squared_error(test_data, test_predictions)
rmse = np.sqrt(mse)
Pro_bar.progress(i/len(grid))
i = i+1
#print('Root Mean Squre Error(RMSE)------------------------------------',rmse)
Pro_model_parameters = Pro_model_parameters.append({'Parameters':p, 'MSE':mse, 'RMSE':rmse},ignore_index=True)
Pro_parameters = Pro_model_parameters.sort_values(by=['RMSE'])
Pro_parameters = Pro_parameters.reset_index(drop=True)
#st.write(Pro_parameters)
st.write('**Hypreparameter Tunning is Done for Prophet Model**')
if 'changepoint_prior_scale' not in st.session_state:
st.session_state['changepoint_prior_scale'] = Pro_parameters['Parameters'][0]['changepoint_prior_scale']
else:
pass
st.session_state['changepoint_prior_scale'] = Pro_parameters['Parameters'][0]['changepoint_prior_scale']
if 'n_changepoints' not in st.session_state:
st.session_state['n_changepoints'] = Pro_parameters['Parameters'][0]['n_changepoints']
else:
pass
st.session_state['n_changepoints'] = Pro_parameters['Parameters'][0]['n_changepoints']
if 'seasonality_prior_scale' not in st.session_state:
st.session_state['seasonality_prior_scale'] = Pro_parameters['Parameters'][0]['seasonality_prior_scale']
else:
pass
st.session_state['seasonality_prior_scale'] = Pro_parameters['Parameters'][0]['seasonality_prior_scale']
else:
pass
Pro_model = Prophet(freq='B', seasonality_mode='multiplicative',
changepoint_prior_scale=st.session_state['changepoint_prior_scale'],
n_changepoints=st.session_state['n_changepoints'],
seasonality_prior_scale=st.session_state['seasonality_prior_scale'],
add_country_holidays={'country_name': 'India'}, verbose=10,
holidays=holiday,
yearly_seasonality=True, weekly_seasonality=False , daily_seasonality=False)
#Pro_model.fit(train_data_minmax)
#fh = list(range(1,int(len(test_data_minmax))+1))
# fh1 = pd.DatetimeIndex(np.array(test_data.index))
# fh1
#test_predictions_minmax = Pro_model.predict(fh=fh)
#st.write(test_predictions_minmax)
#test_predictions=scaler.inverse_transform(test_predictions_minmax)
#test_predictions = pd.DataFrame(test_predictions, columns = ['Close'])
#test_predictions.index = test_data.index
#st.write(test_predictions)
# Exponential Smoothing Model-----------------------------------------------------------------------------------------------------------------
# HyperParameter Tunning
if st.session_state['stock_present']!= st.session_state['stock_past']:
st.write('**Hypreparameter Tunning is Started for Exponential Smoothing Model**')
from sklearn.model_selection import ParameterGrid
params_grid = {'trend':["add", "mul"],
'seasonal' : ["add", "mul"]
}
Expo_model_parameters = pd.DataFrame(columns = ['Parameters','MSE','RMSE'])
grid = ParameterGrid(params_grid)
Expo_bar = st.progress(0)
i = 1
for p in grid:
test = pd.DataFrame()
# print(i,' ',p)
random.seed(0)
train_model = ExponentialSmoothing(trend=p['trend'],
seasonal=p['seasonal'],
sp=262,
damped_trend=False)
train_model.fit(train_data_minmax)
fh = list(range(1,int(len(test_data))+1))
test_predictions = train_model.predict(fh=fh)
test_predictions=scaler.inverse_transform(test_predictions)
mse = mean_squared_error(test_data, test_predictions)
rmse = np.sqrt(mse)
Expo_bar.progress(i/len(grid))
i = i+1
# print('Root Mean Squre Error(RMSE)------------------------------------',rmse)
Expo_model_parameters = Expo_model_parameters.append({'Parameters':p, 'MSE':mse, 'RMSE':rmse},ignore_index=True)
Expo_parameters = Expo_model_parameters.sort_values(by=['RMSE'])
Expo_parameters = Expo_parameters.reset_index(drop=True)
#st.write(Expo_parameters)
st.write('**Hypreparameter Tunning is Done for Exponential Smoothing Model**')
if 'trend' not in st.session_state:
st.session_state['trend'] = Expo_parameters['Parameters'][0]['trend']
else:
pass
st.session_state['trend'] = Expo_parameters['Parameters'][0]['trend']
if 'seasonal' not in st.session_state:
st.session_state['seasonal'] = Expo_parameters['Parameters'][0]['seasonal']
else:
pass
st.session_state['seasonal'] = Expo_parameters['Parameters'][0]['seasonal']
else:
pass
Expo_model = ExponentialSmoothing(trend=st.session_state['trend'],
seasonal=st.session_state['seasonal'],
sp=262,
damped_trend=False)
#Expo_model.fit(train_data_minmax)
#fh = list(range(1,int(len(test_data_minmax))+1))
# fh1 = pd.DatetimeIndex(np.array(test_data.index))
# fh1
#test_predictions_minmax = Expo_model.predict(fh=fh)
#st.write(test_predictions_minmax)
#test_predictions=scaler.inverse_transform(test_predictions_minmax)
#test_predictions = pd.DataFrame(test_predictions, columns = ['Close'])
#test_predictions.index = test_data.index
#st.write(test_predictions)
# AutoEnsembleForecaster Model----------------------------------------------------------------------------------------------------------------
st.subheader('Model Building')
st.write('**Validating the final model**')
forecasters = [
("prophet" , Pro_model),
("expo" , Expo_model)
]
Ensmodel = AutoEnsembleForecaster(forecasters=forecasters, n_jobs=-1, random_state=42)
Ensmodel.fit(train_data_minmax)
fh = list(range(1,int(len(test_data))+1))
# fh1 = pd.DatetimeIndex(np.array(test_data.index))
# fh1
test_predictionsEns = Ensmodel.predict(fh=fh)
#st.write(test_predictionsEns)
test_predictions=scaler.inverse_transform(test_predictionsEns)
test_predictions = pd.DataFrame(test_predictions, columns = ['Close'])
test_predictions.index = test_data.index
#st.write(test_predictions)
mse = mean_squared_error(test_data, test_predictions)
rmse = np.sqrt(mse)
mae = mean_absolute_error(test_data, test_predictions)
mape = np.mean(np.abs((test_data-test_predictions)/test_data))*100
errors = {'MSE':mse, 'RMSE':rmse, 'MAE':mae, 'MAPE':mape}
errors_df = pd.DataFrame(errors)
fig = go.Figure()
fig.add_trace(go.Scatter(x=train_data.index, y=train_data['Close'], mode='lines', name='TRAIN'))
fig.add_trace(go.Scatter(x=test_data.index, y=test_data['Close'], mode='lines', name='TEST'))
fig.add_trace(go.Scatter(x=test_predictions.index, y=test_predictions['Close'], mode='lines', name='PREDICTION'))
fig.update_layout(title_text='Forecast vs Actuals', title_x=0.5)
st.plotly_chart(fig)
st.write(errors_df)
st.write('**If you are satisfied with the Validation then Start the Forecast Or Reset the Session State and re-run the app for Hyperparameter Tunning**')
numdays = st.number_input("Number of Day's you want to Forecaste",
min_value = 1,
max_value = n*3,
value = n)
if 'fr' not in st.session_state:
st.session_state['fr'] = 0
if st.session_state['stock_present']!= st.session_state['stock_past']:
st.session_state['stock_past'] = st.session_state['stock_present']
st.session_state['fr'] = 0
frct = st.selectbox('Start the Forecast', options = ['No', 'Yes'],
index = st.session_state['fr'])
if frct == 'Yes':
st.subheader('Forecasting')
st.session_state['fr'] = 1
forecasters = [
("prophet" , Pro_model),
("expo" , Expo_model)
]
st.write('Training the model')
Ensmodel = AutoEnsembleForecaster(forecasters=forecasters, n_jobs=-1, random_state=42)
Ensmodel.fit(full_data_minmax)
st.write('Forecasting from trained model')
prediction_list = [(pd.to_datetime(endDate) + dttm.timedelta(days=x)).date() for x in range(0,numdays)]
prediction_list = pd.to_datetime(prediction_list)
forecaste = pd.DataFrame(prediction_list, columns=['Date'])
#st.write(forecaste)
for_df = forecaste.set_index('Date')
#st.write(for_df)
for_df = for_df.asfreq('B')
#n = int(len(for_df.index))
#st.write(n)
#fh = list(range(1,n+1))
fh1 = pd.DatetimeIndex(np.array(for_df.index))
# fh1
final_predictions = Ensmodel.predict(fh=fh1)
#st.write(final_predictions)
final_predictions=scaler.inverse_transform(final_predictions)
#st.write(final_predictions)
for_df['Close'] = final_predictions
st.markdown('### Forecast DataSet')
st.write(for_df)
fig = go.Figure()
fig.add_trace(go.Scatter(x=training_data.index, y=training_data['Close'], mode='lines', name='TRAIN'))
fig.add_trace(go.Scatter(x=for_df.index, y=for_df['Close'], mode='lines', name='Forecast'))
fig.update_layout(title_text='Final Forecast', title_x=0.5)
st.write(fig)
elif frct == 'No':
st.session_state['fr'] = 0
else:
pass
if st.sidebar.button('Made By'):
name = ['Ayush Patidar', 'Aditya Rao', 'Farzan Nawaz',
'Nikhil Hosamani', 'Lakshmi Supriya', 'Bhavitha Mitte', 'Aadarsh Asthana']
gmail = ['[email protected]', '[email protected]', '[email protected]',
'[email protected]', '[email protected]', '[email protected]',
'[email protected]']
dt = {'Name':name, 'Contact Detail': gmail}
made = pd.DataFrame(dt)
st.write(made)
else:
pass |