from huggingface_hub import from_pretrained_fastai from fastai.text.all import * import gradio as gr # Cargamos el learner repo_id = "PablitoGil14/ModelEmotions" learner = from_pretrained_fastai(repo_id) # Definimos las etiquetas de nuestro modelo labels = ['0','1','2','3'] example1 = "I cant believe this happened. It was terrible" example2 = "Thats fantastic news!" example3 = "I am very irate by your complete disregard for honesty and decency. Your actions are unacceptable. Go screw yourself." # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(text): pred,pred_idx, probs = learner.predict(text) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.Textbox(), outputs=gr.Label(),examples=[example1,example2,example3]).launch(share=False)