Spaces:
Running
Running
Merge branch 'newbranch' into main
Browse files- app.py +2 -1
- requirements.txt +6 -14
- worker.py +20 -13
app.py
CHANGED
@@ -10,7 +10,8 @@ url = 'https://camels.readthedocs.io/_/downloads/en/latest/pdf/'
|
|
10 |
r = requests.get(url, stream=True)
|
11 |
document_path = Path('metadata.pdf')
|
12 |
document_path.write_bytes(r.content)
|
13 |
-
|
|
|
14 |
|
15 |
def handle_prompt(message, history):
|
16 |
bot_response = worker.process_prompt(message, history)
|
|
|
10 |
r = requests.get(url, stream=True)
|
11 |
document_path = Path('metadata.pdf')
|
12 |
document_path.write_bytes(r.content)
|
13 |
+
# document_path="2022GS.pdf"
|
14 |
+
worker.process_document(document_path)
|
15 |
|
16 |
def handle_prompt(message, history):
|
17 |
bot_response = worker.process_prompt(message, history)
|
requirements.txt
CHANGED
@@ -1,17 +1,9 @@
|
|
1 |
-
Flask
|
2 |
-
Flask_Cors
|
3 |
pdf2image
|
4 |
pypdf
|
5 |
tiktoken
|
6 |
-
|
7 |
-
langchain
|
8 |
-
|
9 |
-
chromadb
|
10 |
-
|
11 |
-
|
12 |
-
sentence-transformers==2.2.2
|
13 |
-
InstructorEmbedding==1.0.0
|
14 |
-
p4python==2023.1.2454917
|
15 |
-
lxml==4.9.2
|
16 |
-
bs4==0.0.1
|
17 |
-
ibm-watson-machine-learning
|
|
|
|
|
|
|
1 |
pdf2image
|
2 |
pypdf
|
3 |
tiktoken
|
4 |
+
langchain
|
5 |
+
langchain-community
|
6 |
+
langchain-huggingface
|
7 |
+
chromadb
|
8 |
+
InstructorEmbedding
|
9 |
+
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
worker.py
CHANGED
@@ -1,14 +1,24 @@
|
|
1 |
import torch
|
2 |
from langchain.chains import RetrievalQA
|
3 |
-
from
|
4 |
-
from
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from
|
7 |
-
from
|
8 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Check for GPU availability and set the appropriate device for computation.
|
11 |
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
12 |
|
13 |
# Global variables
|
14 |
conversation_retrieval_chain = None
|
@@ -20,10 +30,10 @@ embeddings = None
|
|
20 |
def init_llm():
|
21 |
global llm_hub, embeddings
|
22 |
# Set up the environment variable for HuggingFace and initialize the desired model.
|
23 |
-
tokenfile = open("api_token.txt")
|
24 |
-
api_token = tokenfile.readline().replace("\n","")
|
25 |
-
tokenfile.close()
|
26 |
-
os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token
|
27 |
|
28 |
# repo name for the model
|
29 |
# model_id = "tiiuae/falcon-7b-instruct"
|
@@ -32,16 +42,13 @@ def init_llm():
|
|
32 |
# model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
33 |
|
34 |
# load the model into the HuggingFaceHub
|
35 |
-
|
36 |
-
llm_hub = HuggingFaceHub(repo_id=model_id, model_kwargs={"temperature": 0.1, "max_new_tokens": 600, "max_length": 600})
|
37 |
llm_hub.client.api_url = 'https://api-inference.huggingface.co/models/'+model_id
|
38 |
# llm_hub.invoke('foo bar')
|
39 |
|
40 |
#Initialize embeddings using a pre-trained model to represent the text data.
|
41 |
embedddings_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
42 |
# embedddings_model = "sentence-transformers/all-MiniLM-L6-v2"
|
43 |
-
|
44 |
-
# emb_model = SentenceTransformer(embedddings_model)
|
45 |
|
46 |
embeddings = HuggingFaceInstructEmbeddings(
|
47 |
model_name=embedddings_model,
|
|
|
1 |
import torch
|
2 |
from langchain.chains import RetrievalQA
|
3 |
+
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_community.vectorstores import Chroma
|
7 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
8 |
+
# import pip
|
9 |
+
|
10 |
+
# def install(package):
|
11 |
+
# if hasattr(pip, 'main'):
|
12 |
+
# pip.main(['install', package])
|
13 |
+
# else:
|
14 |
+
# pip._internal.main(['install', package])
|
15 |
+
|
16 |
+
# # Temporal fix for incompatibility between langchain_huggingface and sentence-transformers<2.6
|
17 |
+
# install("sentence-transformers==2.2.2")
|
18 |
|
19 |
# Check for GPU availability and set the appropriate device for computation.
|
20 |
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
21 |
+
# DEVICE = "cpu"
|
22 |
|
23 |
# Global variables
|
24 |
conversation_retrieval_chain = None
|
|
|
30 |
def init_llm():
|
31 |
global llm_hub, embeddings
|
32 |
# Set up the environment variable for HuggingFace and initialize the desired model.
|
33 |
+
# tokenfile = open("api_token.txt")
|
34 |
+
# api_token = tokenfile.readline().replace("\n","")
|
35 |
+
# tokenfile.close()
|
36 |
+
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token
|
37 |
|
38 |
# repo name for the model
|
39 |
# model_id = "tiiuae/falcon-7b-instruct"
|
|
|
42 |
# model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
43 |
|
44 |
# load the model into the HuggingFaceHub
|
45 |
+
llm_hub = HuggingFaceEndpoint(repo_id=model_id, temperature=0.1, max_new_tokens=600, model_kwargs={"max_length":600})
|
|
|
46 |
llm_hub.client.api_url = 'https://api-inference.huggingface.co/models/'+model_id
|
47 |
# llm_hub.invoke('foo bar')
|
48 |
|
49 |
#Initialize embeddings using a pre-trained model to represent the text data.
|
50 |
embedddings_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
51 |
# embedddings_model = "sentence-transformers/all-MiniLM-L6-v2"
|
|
|
|
|
52 |
|
53 |
embeddings = HuggingFaceInstructEmbeddings(
|
54 |
model_name=embedddings_model,
|