Spaces:
Runtime error
Runtime error
#-*- coding: UTF-8 -*- | |
# Copyright 2022 The Impira Team and the HuggingFace Team. | |
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import json | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
import traceback | |
import requests | |
import numpy as np | |
import gradio as gr | |
import pdf2image | |
import fitz | |
import cv2 | |
fitz_tools = fitz.Tools() | |
def pdf2img(stream, pagenos, dpi=300, thread_count=3, height=1600): | |
images = [] | |
cimages = pdf2image.convert_from_bytes( | |
stream, dpi=dpi, thread_count=thread_count, first_page=pagenos[0] + 1, last_page=pagenos[-1] + 1, | |
size=height) | |
for _image in cimages: | |
image = np.array(_image) | |
image = image[..., ::-1] | |
images.append(image) | |
return images | |
class PdfReader(object): | |
"""pdf reader""" | |
def __init__(self, | |
stream: bytes, | |
image_height: int = 1600): | |
self.stream = stream | |
self._image_height = image_height | |
self._dpi = 200 | |
self._inpdf = self.load_file(stream) | |
def load_file(stream): | |
"""load document""" | |
try: | |
inpdf = fitz.Document(stream=stream, filetype="pdf") | |
except Exception as e: | |
print(f"[PDF_READER]-[Failed to load the file]-[{repr(e)}]") | |
return inpdf | |
def _convert_page_obj_to_image(page_obj, image_height: int = None): | |
"""fitz convert pdf to image | |
Args: | |
page_obj ([type]): [description] | |
ratio ([type]): [description] | |
Returns: | |
[type]: [description] | |
""" | |
if image_height: | |
_, page_height = page_obj.rect.x1 - \ | |
page_obj.rect.x0, page_obj.rect.y1 - page_obj.rect.y0 | |
ratio = image_height / page_height | |
else: | |
ratio = 1.0 | |
trans = fitz.Matrix(ratio, ratio) | |
pixmap = page_obj.get_pixmap(matrix=trans, alpha=False) | |
image = cv2.imdecode(np.frombuffer(pixmap.tobytes(), np.uint8), -1) | |
fitz_tools.store_shrink(100) | |
return image | |
def get_page_image(self, | |
pageno): | |
"""get page image | |
Args: | |
pageno ([type]): [description] | |
Returns: | |
[type]: [description] | |
""" | |
try: | |
page_obj = self._inpdf[pageno] | |
return self._convert_page_obj_to_image(page_obj, self._image_height) | |
except Exception as e: | |
print(f"[Failed to convert the PDF to images]-[{repr(e)}]") | |
try: | |
return pdf2img(stream=self.stream, | |
pagenos=[pageno], | |
height=self._image_height, | |
dpi=self._dpi)[0] | |
except Exception as e: | |
print(f"[Failed to convert the PDF to images]-[{repr(e)}]") | |
return None | |
examples = [ | |
[ | |
"budget_form.png", | |
"What is the total actual and/or obligated expenses of ECG Center?" | |
], | |
[ | |
"medical_bill_2.png", | |
"患者さんは何でお金を払いますか。" | |
], | |
[ | |
"receipt.png", | |
"เบอร์โทรร้านอะไรคะ" | |
], | |
[ | |
"poster.png", | |
"Which gift idea needs a printer?" | |
], | |
[ | |
"resume.png", | |
"五百丁本次想要担任的是什么职位?", | |
], | |
[ | |
"custom_declaration_form.png", | |
"在哪个口岸进口?" | |
], | |
[ | |
"invoice.jpg", | |
"发票号码是多少?", | |
], | |
[ | |
"medical_bill_1.png", | |
"票据的具体名称是什么?" | |
], | |
[ | |
"website_design_guide.jpeg", | |
"Which quality component has the icon of a pen in it?" | |
], | |
] | |
prompt_files = { | |
"发票号码是多少?": "invoice.jpg", | |
"五百丁本次想要担任的是什么职位?": "resume.png", | |
"在哪个口岸进口?": "custom_declaration_form.png", | |
"票据的具体名称是什么?": "medical_bill_1.png", | |
"What is the total actual and/or obligated expenses of ECG Center?": "budget_form.png", | |
"Which quality component has the icon of a pen in it?": "website_design_guide.jpeg", | |
"Which gift idea needs a printer?": "poster.png", | |
"患者さんは何でお金を払いますか。": "medical_bill_2.png", | |
"เบอร์โทรร้านอะไรคะ": "receipt.png" | |
} | |
def load_document(path): | |
if path.startswith("http://") or path.startswith("https://"): | |
resp = requests.get(path, allow_redirects=True, stream=True) | |
b = resp.raw | |
else: | |
b = open(path, "rb") | |
if path.endswith(".pdf"): | |
images_list = [] | |
pdfreader = PdfReader(stream=b.read()) | |
for p_no in range(0, pdfreader._inpdf.page_count): | |
img_np = pdfreader.get_page_image(pageno=p_no) | |
images_list.append(img_np) | |
else: | |
image = Image.open(b) | |
images_list = [image.convert("RGB")] | |
return images_list | |
def process_path(path): | |
error = None | |
if path: | |
try: | |
img = load_document(path) | |
return ( | |
path, | |
gr.update(visible=True, value=img), | |
gr.update(visible=True), | |
gr.update(visible=False, value=None), | |
gr.update(visible=False, value=None), | |
None, | |
) | |
except Exception as e: | |
traceback.print_exc() | |
error = str(e) | |
return ( | |
None, | |
gr.update(visible=False, value=None), | |
gr.update(visible=False), | |
gr.update(visible=False, value=None), | |
gr.update(visible=False, value=None), | |
gr.update(visible=True, value=error) if error is not None else None, | |
None, | |
) | |
def process_upload(file): | |
if file: | |
return process_path(file.name) | |
else: | |
return ( | |
None, | |
gr.update(visible=False, value=None), | |
gr.update(visible=False), | |
gr.update(visible=False, value=None), | |
gr.update(visible=False, value=None), | |
None, | |
) | |
def process_prompt(prompt, document, lang="ch"): | |
if not prompt: | |
prompt = "What is the total actual and/or obligated expenses of ECG Center?" | |
if document is None: | |
return None, None, None | |
access_token = os.environ['token'] | |
url = f"https://aip.baidubce.com/rpc/2.0/nlp-itec/poc/docprompt?access_token={access_token}" | |
r = requests.post(url, json={"doc": document, "prompt": [prompt], "lang": lang}) | |
response = r.json() | |
predictions = response['result'] | |
img_list = response['image'] | |
pages = [Image.open(BytesIO(base64.b64decode(img))) for img in img_list] | |
text_value = predictions[0]['result'][0]['value'] | |
return ( | |
gr.update(visible=True, value=pages), | |
gr.update(visible=True, value=predictions), | |
gr.update( | |
visible=True, | |
value=text_value, | |
), | |
) | |
def load_example_document(img, prompt, lang="ch"): | |
if img is not None: | |
document = prompt_files[prompt] | |
preview, answer, answer_text = process_prompt(prompt, document, lang) | |
return document, prompt, preview, gr.update(visible=True), answer, answer_text | |
else: | |
return None, None, None, gr.update(visible=False), None, None | |
def read_content(file_path: str) -> str: | |
"""read the content of target file | |
""" | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return content | |
CSS = """ | |
#prompt input { | |
font-size: 16px; | |
} | |
#url-textbox { | |
padding: 0 !important; | |
} | |
#short-upload-box .w-full { | |
min-height: 10rem !important; | |
} | |
/* I think something like this can be used to re-shape | |
* the table | |
*/ | |
/* | |
.gr-samples-table tr { | |
display: inline; | |
} | |
.gr-samples-table .p-2 { | |
width: 100px; | |
} | |
*/ | |
#select-a-file { | |
width: 100%; | |
} | |
#file-clear { | |
padding-top: 2px !important; | |
padding-bottom: 2px !important; | |
padding-left: 8px !important; | |
padding-right: 8px !important; | |
margin-top: 10px; | |
} | |
.gradio-container .gr-button-primary { | |
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%); | |
border: 1px solid #B0DCCC; | |
border-radius: 8px; | |
color: #1B8700; | |
} | |
.gradio-container.dark button#submit-button { | |
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%); | |
border: 1px solid #B0DCCC; | |
border-radius: 8px; | |
color: #1B8700 | |
} | |
table.gr-samples-table tr td { | |
border: none; | |
outline: none; | |
} | |
table.gr-samples-table tr td:first-of-type { | |
width: 0%; | |
} | |
div#short-upload-box div.absolute { | |
display: none !important; | |
} | |
gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div { | |
gap: 0px 2%; | |
} | |
gradio-app div div div div.w-full, .gradio-app div div div div.w-full { | |
gap: 0px; | |
} | |
gradio-app h2, .gradio-app h2 { | |
padding-top: 10px; | |
} | |
#answer { | |
overflow-y: scroll; | |
color: white; | |
background: #666; | |
border-color: #666; | |
font-size: 20px; | |
font-weight: bold; | |
} | |
#answer span { | |
color: white; | |
} | |
#answer textarea { | |
color:white; | |
background: #777; | |
border-color: #777; | |
font-size: 18px; | |
} | |
#url-error input { | |
color: red; | |
} | |
""" | |
with gr.Blocks(css=CSS) as demo: | |
gr.HTML(read_content("header.html")) | |
gr.Markdown( | |
f" ⚡DocPrompt⚡ is a Document Prompt Engine uses ERNIE-LayoutX as the backbone model.\n" | |
f" The engine is powered by Baidu Wenxin Document Intelligence Team 🚀 and is ability for multilingual documents information extraction and question ansering.\n" | |
) | |
document = gr.Variable() | |
example_prompt = gr.Textbox(visible=False) | |
example_image = gr.Image(visible=False) | |
with gr.Row(equal_height=True): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown("## 1. Select a file", elem_id="select-a-file") | |
img_clear_button = gr.Button( | |
"Clear", variant="secondary", elem_id="file-clear", visible=False | |
) | |
image = gr.Gallery(visible=False) | |
with gr.Row(equal_height=True): | |
with gr.Column(): | |
with gr.Row(): | |
url = gr.Textbox( | |
show_label=False, | |
placeholder="URL", | |
lines=1, | |
max_lines=1, | |
elem_id="url-textbox", | |
) | |
submit = gr.Button("Get") | |
url_error = gr.Textbox( | |
visible=False, | |
elem_id="url-error", | |
max_lines=1, | |
interactive=False, | |
label="Error", | |
) | |
gr.Markdown("— or —") | |
upload = gr.File(label=None, interactive=True, elem_id="short-upload-box") | |
gr.Examples( | |
examples=examples, | |
inputs=[example_image, example_prompt], | |
) | |
with gr.Column() as col: | |
gr.Markdown("## 2. Make a request") | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="What is the total actual and/or obligated expenses of ECG Center?", | |
lines=1, | |
max_lines=1, | |
) | |
ocr_lang = gr.Radio( | |
choices=["ch", "en"], | |
value="ch", | |
label="OCR Language", | |
) | |
with gr.Row(): | |
clear_button = gr.Button("Clear", variant="secondary") | |
submit_button = gr.Button( | |
"Submit", variant="primary", elem_id="submit-button" | |
) | |
with gr.Column(): | |
output_text = gr.Textbox( | |
label="Top Answer", visible=False, elem_id="answer" | |
) | |
output = gr.JSON(label="Output", visible=False) | |
for cb in [img_clear_button, clear_button]: | |
cb.click( | |
lambda _: ( | |
gr.update(visible=False, value=None), | |
None, | |
gr.update(visible=False, value=None), | |
gr.update(visible=False, value=None), | |
gr.update(visible=False), | |
None, | |
None, | |
None, | |
gr.update(visible=False, value=None), | |
None, | |
), | |
inputs=clear_button, | |
outputs=[ | |
image, | |
document, | |
output, | |
output_text, | |
img_clear_button, | |
example_image, | |
upload, | |
url, | |
url_error, | |
prompt, | |
], | |
) | |
upload.change( | |
fn=process_upload, | |
inputs=[upload], | |
outputs=[document, image, img_clear_button, output, output_text, url_error], | |
) | |
submit.click( | |
fn=process_path, | |
inputs=[url], | |
outputs=[document, image, img_clear_button, output, output_text, url_error], | |
) | |
prompt.submit( | |
fn=process_prompt, | |
inputs=[prompt, document, ocr_lang], | |
outputs=[image, output, output_text], | |
) | |
submit_button.click( | |
fn=process_prompt, | |
inputs=[prompt, document, ocr_lang], | |
outputs=[image, output, output_text], | |
) | |
ocr_lang.change( | |
fn=process_prompt, | |
inputs=[prompt, document, ocr_lang], | |
outputs=[image, output, output_text], | |
) | |
example_image.change( | |
fn=load_example_document, | |
inputs=[example_image, example_prompt, ocr_lang], | |
outputs=[document, prompt, image, img_clear_button, output, output_text], | |
) | |
gr.Markdown("[![Stargazers repo roster for @PaddlePaddle/PaddleNLP](https://reporoster.com/stars/PaddlePaddle/PaddleNLP)](https://github.com/PaddlePaddle/PaddleNLP)") | |
gr.HTML(read_content("footer.html")) | |
if __name__ == "__main__": | |
demo.launch(enable_queue=False) | |