File size: 1,106 Bytes
2fbe064
a5c6602
2fbe064
a5c6602
 
2fbe064
 
a5c6602
 
 
 
2fbe064
a5c6602
 
2fbe064
a5c6602
2fbe064
 
a5c6602
 
 
2fbe064
a5c6602
2fbe064
a5c6602
 
 
 
 
 
 
 
 
2fbe064
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gradio as gr
from paddlenlp.transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B", dtype="float32")


def inference(input_text):
    print(input_text)
    print(type(input_text))
    input_features = tokenizer(input_text, return_tensors="pd")

    outputs = model.generate(**input_features, max_new_tokens=128)#max_length=128)
    output_text = tokenizer.batch_decode(outputs[0], skip_special_tokens=True)[0]

    return output_text


title = 'PaddlePaddle Meets LLM'
description = 'What is special: underlying execution is using PaddlePaddle and PaddleNLP!'
article = "<p style='text-align: center'> PaddleNLP <a href='https://github.com/PaddlePaddle/PaddleNLP'>Github Repo</a></p>"

examples = ['请自我介绍一下。', '今天吃什么好呢?']

demo = gr.Interface(
    inference,
    inputs="text",
    outputs="text",
    title=title,
    description=description,
    article=article,
    examples=examples,
    )


if __name__ == "__main__":
    demo.launch()