Spaces:
Sleeping
Sleeping
File size: 5,689 Bytes
41b4975 d1f74f7 41b4975 d1f74f7 41b4975 52b0d10 41b4975 52b0d10 fd1ffce 41b4975 d1f74f7 41b4975 9f29ff6 41b4975 9f29ff6 41b4975 9f29ff6 41b4975 9f29ff6 feb4660 9f29ff6 feb4660 9f29ff6 feb4660 fd1ffce d31b16f feb4660 ba2d372 41b4975 9f29ff6 fd1ffce 9f29ff6 feb4660 9f29ff6 fd1ffce 9f29ff6 feb4660 9f29ff6 fd1ffce 9f29ff6 fd1ffce 9f29ff6 fd1ffce 9f29ff6 fd1ffce 9f29ff6 fd1ffce 9f29ff6 41b4975 9f29ff6 fd1ffce 9f29ff6 41b4975 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
#%%
import gradio as gr
from PIL import Image
from torchvision import transforms
from siamese_nn import Siamese_nn
import torch, os
import torch.nn.functional as F
model = Siamese_nn()
weights = torch.load('trained_model', map_location=torch.device('cpu'))
model.load_state_dict(weights)
model.eval()
file_list = os.listdir("data")
examples = []
usersIndexes = []
for x in file_list:
if x[0:2] not in usersIndexes:
usersIndexes.append(x[0:2])
for user in usersIndexes:
usersImages = [x for x in file_list if str(user) in x]
notUsersImages = [x for x in file_list if str(user) not in x]
for userImage in usersImages:
for userImageCopy in usersImages:
examples.append([userImage, userImageCopy, 0])
for notUser in notUsersImages:
examples.append([userImage, notUser, 1])
def predict(input1, input2, label=None):
img1_PIL = Image.open(f'data/{input1}')
img2_PIL = Image.open(f'data/{input2}')
img1 = transforms.ToTensor()(img1_PIL).unsqueeze(0)
img2 = transforms.ToTensor()(img2_PIL).unsqueeze(0)
for el in examples:
if input1 == el[0] and input2 == el[1] and el[2] == 0:
label = 'Scans of the same finger'
break
if input1 == el[0] and input2 == el[1] and el[2] == 1:
label = 'Scans of different fingers'
with torch.no_grad():
out1, out2 = model(img1, img2)
pred = F.pairwise_distance(out1, out2)
if pred < 0.6:
decision = f'Access granted, confidence: {pred.item():4f}'
else:
decision = f'Access denied, confidence: {pred.item():4f}'
return img1_PIL, img2_PIL, decision, label
#%%
css = """
.gradio-container {
height: 100vh;
max-width: 1024px !important;
}
.my_img {
max-height: 288px !important;
object-fit: cover !important;
}
.img-select div.secondary-wrap {
position: relative;
}
.img-select div.icon-wrap {
position: absolute;
pointer-events: none;
right: 0;
}
#res div h2 { color: #07ef03; }
"""
js = """
() => {
label = document.querySelector("#res div h2");
txt = label.textContent.split(",")[0]
if (txt === 'Access granted') {
label.style.color = "#07ef03";
}
if (txt === 'Access denied') {
label.style.color = "red";
}
}
"""
dropdowns = """
() => {
input_el = document.querySelectorAll(".img-select input");
input_el[0].type = "button";
input_el[1].type = "button";
/*
svg = document.querySelectorAll(".img-select div.icon-wrap");
ul = document.querySelectorAll(".img-select ul.options);
for (let i = 0; i < input_el.length; i++){
input_el[i].addEventListener("click", () => {
svg[i].style.transform = "rotate(180deg)";
})
}*/
}
"""
def refresh():
image = Image.open(f'data/{file_list[0]}')
return image, image
with gr.Blocks(css=css, js=dropdowns, elem_classes=['container']) as demo:
md = gr.Markdown(value="""# Follow the steps
- To check model performance choose first and second image from available examples.
- You can pair up images of the same or different fingerprints. The result from model will be automatically calculated.
- Additionally displayed confidence shows the similarity between images. The closer to 0, the more similar - more confident model
- Access is granted if value of confidence is below certain threshold found during model testing.""")
with gr.Row():
with gr.Row():
drop1 = gr.Dropdown(value=file_list[0],
choices=file_list,
label='Select first image',
scale=1,
elem_classes='img-select',
)
drop2 = gr.Dropdown(value=file_list[0],
choices=file_list,
label='Select second image',
scale=1,
elem_classes='img-select',
)
label = gr.Label(value='Scans of the same finger', show_label=False)
with gr.Row():
img1 = gr.Image(height=288, # unfortunately value doesn't work properly
width=256,
interactive=False,
scale=1,
label='first image',
show_download_button=False,
show_share_button=False,
elem_classes=['my-img'])
img2 = gr.Image(height=288,
width=256,
interactive=False,
scale=1,
label='second image',
show_download_button=False,
show_share_button=False,
elem_classes=['my-img'])
output = gr.Label(value=predict(*examples[0])[2], elem_id='res', show_label=False)
drop1.change(fn=predict, inputs=[drop1, drop2], outputs=[img1, img2, output, label])
drop2.change(fn=predict, inputs=[drop1, drop2], outputs=[img1, img2, output, label])
output.change(fn=None, inputs=None, js=js)
# initial img load workaround
demo.load(fn=refresh, inputs=None, outputs=[img1, img2])
demo.launch()
# %%
|