File size: 18,889 Bytes
e4c2725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682fb24
 
 
 
 
 
 
 
 
 
 
0c7787e
682fb24
d01eb9b
 
 
 
 
 
 
 
0c7787e
 
 
 
d01eb9b
682fb24
d01eb9b
 
 
 
 
 
0c7787e
 
 
 
 
d01eb9b
682fb24
d01eb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682fb24
d01eb9b
682fb24
 
 
 
 
 
 
 
e4c2725
682fb24
e4c2725
682fb24
 
 
11c205c
 
e4c2725
 
682fb24
 
e4c2725
 
 
 
 
11c205c
 
 
 
 
682fb24
11c205c
 
682fb24
e4c2725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11c205c
 
 
 
 
682fb24
 
 
11c205c
 
 
 
682fb24
 
 
 
11c205c
 
 
 
 
e4c2725
 
 
631135b
e4c2725
 
 
 
 
 
 
9960112
e4c2725
 
 
 
 
 
9960112
 
 
 
 
631135b
 
 
 
 
 
 
 
 
9960112
 
 
 
 
 
631135b
 
 
 
 
 
 
 
9960112
 
 
 
 
 
 
 
 
631135b
9960112
 
 
 
 
 
 
 
 
 
 
 
 
e4c2725
 
9960112
 
e4c2725
 
9960112
 
 
631135b
9960112
631135b
 
 
 
 
 
 
 
 
 
 
 
 
e4c2725
 
 
 
 
92cee8e
 
 
 
 
e4c2725
 
 
 
 
 
 
 
 
 
 
11c205c
 
e4c2725
11c205c
 
e4c2725
 
 
 
 
 
11c205c
 
e4c2725
 
 
 
 
 
 
 
 
 
 
11c205c
e4c2725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aadd612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c2725
 
aadd612
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import gradio as gr
import os
import base64
from datetime import datetime
import requests
import trello
from dotenv import load_dotenv
import urllib3
import wave
import audioop
import io
import speech_recognition as sr

# Disable SSL warning
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

# Load environment variables from .env file
load_dotenv()

SAMBANOVA_API_KEY = "34115dcb-baab-4390-ab5c-e501666f9f4e"
SAMBANOVA_URL = "https://api.sambanova.ai/v1/chat/completions"

# Initialize Trello client
trello_client = trello.TrelloClient(
    api_key=os.getenv('TRELLO_API_KEY'),
    token=os.getenv('TRELLO_TOKEN')
)

def get_trello_members():
    """Get all members from Trello workspace"""
    try:
        boards = trello_client.list_boards()
        if not boards:
            raise Exception("No Trello boards found")
        
        board = boards[0]
        members = board.get_members()
        return {(member.full_name or member.username): member.id for member in members}
    except Exception as e:
        print(f"Error fetching Trello members: {str(e)}")
        return {}

def process_audio_data(audio_path):
    """Process WAV audio file"""
    try:
        with wave.open(audio_path, 'rb') as wav_file:
            # Get audio parameters
            n_channels = wav_file.getnchannels()
            sampwidth = wav_file.getsampwidth()
            framerate = wav_file.getframerate()
            n_frames = wav_file.getnframes()
            
            # Read audio data
            audio_data = wav_file.readframes(n_frames)
            
            # Convert to mono if stereo
            if n_channels == 2:
                audio_data = audioop.tomono(audio_data, sampwidth, 1, 1)
            
            # Convert to 16-bit if needed
            if sampwidth != 2:
                audio_data = audioop.lin2lin(audio_data, sampwidth, 2)
            
            # Resample to 16kHz if needed
            if framerate != 16000:
                audio_data, _ = audioop.ratecv(audio_data, 2, 1, framerate, 16000, None)
                framerate = 16000
            
            return audio_data, framerate
            
    except Exception as e:
        print(f"Error processing audio: {str(e)}")
        raise

def transcribe_audio(audio_file):
    """Convert audio to text using Speech Recognition"""
    try:
        # Initialize recognizer
        recognizer = sr.Recognizer()
        
        # Handle different audio input formats
        if isinstance(audio_file, tuple):
            audio_path = audio_file[0]
        else:
            audio_path = audio_file
            
        print(f"Processing audio file: {audio_path}")
        
        try:
            # Load the audio file
            with sr.AudioFile(audio_path) as source:
                # Adjust for ambient noise
                recognizer.adjust_for_ambient_noise(source)
                # Read the audio data
                audio_data = recognizer.record(source)
                
                # Perform the transcription with increased timeout
                text = recognizer.recognize_google(
                    audio_data,
                    language='en-US',
                    show_all=False,
                    with_confidence=False
                )
                
                if not text:
                    raise Exception("No transcription results returned")
                    
                return text.strip()
                
        except sr.UnknownValueError:
            raise Exception("Speech could not be understood. Please try speaking more clearly.")
        except sr.RequestError as e:
            raise Exception(f"Could not request results from Google Speech Recognition service; {e}")
            
    except Exception as e:
        print(f"Transcription error details: {str(e)}")
        raise Exception(f"Transcription error: {str(e)}")

def analyze_emotion(text):
    """Analyze text emotion using Hugging Face API"""
    API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions"
    headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
    
    try:
        response = requests.post(API_URL, headers=headers, json={"inputs": text})
        emotions = response.json()
        
        # Extract emotion scores
        if isinstance(emotions, list) and len(emotions) > 0:
            emotion_scores = [item for item in emotions[0] if item['label'] != 'neutral']
            
            # Define emotion categories with their respective thresholds
            urgent_emotions = {
                'anger': 0.15,
                'fear': 0.40,
                'annoyance': 0.10,
                'disapproval': 0.30,
                'nervousness': 0.25,
                'disgust': 0.20,
                'disappointment': 0.40,
                'grief': 0.05,  # Added more emotional states
                'remorse': 0.10,
                'sadness': 0.40
            }
            
            high_priority_emotions = {
                'desire': 0.25,
                'excitement': 0.35,
                'surprise': 0.15,
                'curiosity': 0.25,
                'optimism': 0.20,
                'pride': 0.10,
                'joy': 0.40,    # Added more emotional states
                'love': 0.25,
                'admiration': 0.25,
                'gratitude': 0.45
            }
            
            # Calculate weighted urgency scores
            urgent_score = 0
            high_priority_score = 0
            
            for item in emotion_scores:
                emotion = item['label']
                score = item['score']
                
                if emotion in urgent_emotions and score > urgent_emotions[emotion]:
                    urgent_score += score
                elif emotion in high_priority_emotions and score > high_priority_emotions[emotion]:
                    high_priority_score += score
            
            # Determine urgency level based on weighted scores
            if urgent_score > 0.4:  # Adjusted threshold
                return "urgent"
            elif high_priority_score > 0.3 or urgent_score > 0.2:  # Adjusted thresholds
                return "high"
            return "normal"
            
        return "normal"
    except Exception as e:
        print(f"Error in emotion analysis: {str(e)}")
        return "normal"

def improve_task_description(text):
    """Improve and summarize task description using SambaNova API and emotion analysis"""
    try:
        # First analyze emotion to get initial urgency assessment
        emotion_urgency = analyze_emotion(text)
        
        prompt = f"""Please analyze and structure this task description, including determining its urgency level. 

Original task: {text}

Initial emotion-based urgency assessment: {emotion_urgency}

Please provide:
1. A clear, concise task title
2. Key objectives
3. Suggested deadline (if not specified)
4. Any important details or requirements
5. Urgency level assessment (choose one: normal, high, urgent) based on:
   - Time-sensitive language (ASAP, immediately, urgent, etc.)
   - Deadlines mentioned
   - Impact and consequences described
   - Business criticality
   - Emotional context and tone
   
Format the response with "URGENCY_LEVEL: [level]" as the first line, followed by the structured description.
Consider the emotion-based urgency assessment provided above when making the final urgency determination.
"""

        headers = {
            'Authorization': f'Bearer {SAMBANOVA_API_KEY}',
            'Content-Type': 'application/json'
        }
        
        data = {
            'messages': [
                {'role': 'user', 'content': prompt}
            ],
            'model': 'Meta-Llama-3.1-8B-Instruct',
            'max_tokens': 2000,
            'temperature': 0.7
        }
        
        response = requests.post(
            SAMBANOVA_URL,
            headers=headers,
            json=data,
            verify=False,
            timeout=620
        )
        
        if response.status_code != 200:
            raise Exception(f"SambaNova API request failed: {response.text}")
            
        response_text = response.json()['choices'][0]['message']['content']
        
        # Extract urgency level and description
        lines = response_text.split('\n')
        urgency_line = lines[0].strip()
        
        # Use emotion-based urgency as fallback
        urgency = emotion_urgency
        
        if urgency_line.startswith("URGENCY_LEVEL:"):
            level = urgency_line.split(":")[1].strip().lower()
            if level in ["normal", "high", "urgent"]:
                # Compare with emotion-based urgency and use the higher priority
                urgency_levels = {"normal": 0, "high": 1, "urgent": 2}
                if urgency_levels[level] > urgency_levels[emotion_urgency]:
                    urgency = level
            description = '\n'.join(lines[1:]).strip()
        else:
            description = response_text
            
        return description, urgency
    except Exception as e:
        raise Exception(f"Error improving task description: {str(e)}")

def create_trello_card(task_description, selected_members, location=None, urgency="normal"):
    """Create a Trello card with the improved task description"""
    try:
        boards = trello_client.list_boards()
        if not boards:
            raise Exception("No Trello boards found")
        
        board = boards[0]
        print(f"Using board: {board.name}")
        
        lists = board.list_lists()
        if not lists:
            raise Exception("No lists found in the board")
        
        todo_list = lists[0]
        print(f"Using list: {todo_list.name}")
        
        # Extract title and add timestamp
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M")
        title = task_description.split('\n')[0]
        
        # Add urgency to title
        urgency_markers = {
            "normal": "πŸ“˜",
            "high": "⚠️",
            "urgent": "πŸ”΄"
        }
        urgency_marker = urgency_markers.get(urgency.lower(), "πŸ“˜")
        formatted_title = f"[{timestamp}] {urgency_marker} {title}"
        
        location_text = "Remote/Virtual"
        location_coords = None
        
        if location:
            location_text = location
        
        # Map urgency to status text
        urgency_status = {
            "normal": "Normal Priority",
            "high": "High Priority",
            "urgent": "URGENT"
        }
        status_text = urgency_status.get(urgency.lower(), "Normal Priority")
        
        formatted_description = f"""🎯 TASK DETAILS
------------------------
{task_description}

πŸ“‹ METADATA
------------------------
πŸ•’ Created: {timestamp}
🏷️ Source: TaskWhisper AI
⚑ Priority: {status_text}
πŸ“ Location: {location_text}

βœ… CHECKLIST
------------------------
- [ ] Task reviewed
- [ ] Requirements clear
- [ ] Timeline confirmed
- [ ] Resources identified

πŸ“ NOTES
------------------------
Add your progress notes here...
"""
        
        card = todo_list.add_card(
            name=formatted_title,
            desc=formatted_description
        )
        
        if location_coords:
            card.set_pos(location_coords)
        
        # Add label based on urgency
        available_labels = board.get_labels()
        urgency_colors = {
            "normal": "blue",
            "high": "yellow",
            "urgent": "red"
        }
        label_color = urgency_colors.get(urgency.lower(), "blue")
        
        # Find and add the appropriate label
        priority_label = next((label for label in available_labels if label.color == label_color), None)
        if priority_label:
            card.add_label(priority_label)
        else:
            print(f"Warning: {label_color} label not found on board")
        
        # Assign members to card
        if selected_members:
            for member_id in selected_members:
                try:
                    member = next((m for m in board.get_members() if m.id == member_id), None)
                    if member:
                        card.add_member(member)
                    else:
                        print(f"Warning: Member with ID {member_id} not found on board")
                except Exception as e:
                    print(f"Error adding member {member_id}: {str(e)}")
        
        return card.url
    except Exception as e:
        print(f"Trello card creation error details: {str(e)}")
        raise Exception(f"Error creating Trello card: {str(e)}")

def process_input(input_text, selected_members):
    """Process input text and create Trello card"""
    try:
        # Improve the task description and get urgency
        improved_description, urgency = improve_task_description(input_text)
        
        # Create Trello card with detected urgency
        card_url = create_trello_card(improved_description, selected_members, urgency=urgency)
        
        # Get member names for display
        members_dict = get_trello_members()
        member_names = [name for name, mid in members_dict.items() 
                       if mid in selected_members]
        
        urgency_emoji = {"normal": "πŸ“˜", "high": "⚠️", "urgent": "πŸ”΄"}
        
        return f"""
Original Input:
--------------
{input_text}

Improved Task Description:
------------------------
{improved_description}

Task Created in Trello:
----------------------
Priority: {urgency_emoji.get(urgency, "πŸ“˜")} {urgency.upper()}
Assigned to: {', '.join(member_names) if member_names else 'Not assigned'}
Card URL: {card_url}
"""
    except Exception as e:
        return f"Error processing input: {str(e)}"

def process_audio(audio_file, selected_members):
    """Process audio input and create Trello card"""
    try:
        if audio_file is None:
            return "Error: No audio file or text provided"
        print(f"Audio file type: {type(audio_file)}")  # Debug print
        print(f"Audio file content: {audio_file}")     # Debug print
        text = transcribe_audio(audio_file)
        
        return process_input(text, selected_members)
    except Exception as e:
        print(f"Audio processing error details: {str(e)}")  # Debug print
        return f"Error processing audio: {str(e)}"

def process_audio_with_members(audio, selected_members):
    """Process audio with selected members"""
    try:
        if audio is None:
            return "Error: Please provide an audio input (record or upload)"
            
        print(f"Received audio input: {type(audio)}")
        print(f"Audio content: {audio}")
        
        # Convert selected member names to member IDs
        members_dict = get_trello_members()
        selected_member_ids = []
        for name in (selected_members or []):
            if name in members_dict:
                selected_member_ids.append(members_dict[name])
            else:
                print(f"Warning: Member {name} not found in members dictionary")
        
        try:
            result = process_audio(audio, selected_member_ids)
            return result
        except Exception as e:
            error_msg = str(e)
            if "Speech could not be understood" in error_msg:
                return "Could not understand the speech. Please try again with clearer audio."
            elif "Could not request results" in error_msg:
                return "Network error. Please check your internet connection and try again."
            else:
                return f"Error processing audio: {error_msg}"
                
    except Exception as e:
        print(f"Error in process_audio_with_members: {str(e)}")
        return f"Error processing audio with members: {str(e)}"

def process_text_with_members(text, selected_members):
    """Process text with selected members"""
    try:
        # Convert selected member names to member IDs
        members_dict = get_trello_members()
        # Debug prints
        print(f"Members dict: {members_dict}")
        print(f"Selected members: {selected_members}")
        
        selected_member_ids = []
        for name in (selected_members or []):
            if name in members_dict:
                selected_member_ids.append(members_dict[name])
            else:
                print(f"Warning: Member {name} not found in members dictionary")
        
        return process_input(text, selected_member_ids)
    except Exception as e:
        print(f"Error in process_text_with_members: {str(e)}")
        return f"Error processing text with members: {str(e)}"

# Create Gradio interface
with gr.Blocks(title="TaskWhisper - Smart Task Manager") as interface:
    gr.Markdown("# πŸŽ™οΈ TaskWhisper - Smart Task Manager")
    gr.Markdown("Record audio or type your task. The AI will help improve and structure your task description.")
    
    # Get Trello members for the dropdown
    members = get_trello_members()
    
    with gr.Tab("Audio Input"):
        audio_input = gr.Audio(
            label="Record or Upload Audio",
            sources=["microphone", "upload"],
            type="filepath",
            format="wav",
            interactive=True
        )
        gr.Markdown("""
        *Instructions:*
        - Use microphone to record directly
        - Or upload an audio file (WAV format)
        - Speak clearly for better results
        - Keep background noise minimal
        """)
        member_dropdown_audio = gr.Dropdown(
            choices=list(members.keys()),
            multiselect=True,
            label="Assign to Members",
            info="Select one or more members to assign the task",
            value=[]
        )
        audio_button = gr.Button("Process Audio")
    
    with gr.Tab("Text Input"):
        text_input = gr.Textbox(
            lines=3,
            placeholder="Type your task here (e.g., 'Need to prepare quarterly report with sales data by next Friday')",
            label="Text Input"
        )
        member_dropdown_text = gr.Dropdown(
            choices=list(members.keys()),
            multiselect=True,
            label="Assign to Members",
            info="Select one or more members to assign the task",
            value=[]  # Initialize with empty selection
        )
        text_button = gr.Button("Process Text")
    
    output = gr.Textbox(
        label="Task Details",
        lines=15
    )
    
    # Set up event handlers
    audio_button.click(
        fn=process_audio_with_members,
        inputs=[audio_input, member_dropdown_audio],
        outputs=output
    )
    
    text_button.click(
        fn=process_text_with_members,
        inputs=[text_input, member_dropdown_text],
        outputs=output
    )

if __name__ == "__main__":
    interface.launch(share=True)