File size: 18,889 Bytes
e4c2725 682fb24 0c7787e 682fb24 d01eb9b 0c7787e d01eb9b 682fb24 d01eb9b 0c7787e d01eb9b 682fb24 d01eb9b 682fb24 d01eb9b 682fb24 e4c2725 682fb24 e4c2725 682fb24 11c205c e4c2725 682fb24 e4c2725 11c205c 682fb24 11c205c 682fb24 e4c2725 11c205c 682fb24 11c205c 682fb24 11c205c e4c2725 631135b e4c2725 9960112 e4c2725 9960112 631135b 9960112 631135b 9960112 631135b 9960112 e4c2725 9960112 e4c2725 9960112 631135b 9960112 631135b e4c2725 92cee8e e4c2725 11c205c e4c2725 11c205c e4c2725 11c205c e4c2725 11c205c e4c2725 aadd612 e4c2725 aadd612 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
import gradio as gr
import os
import base64
from datetime import datetime
import requests
import trello
from dotenv import load_dotenv
import urllib3
import wave
import audioop
import io
import speech_recognition as sr
# Disable SSL warning
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
# Load environment variables from .env file
load_dotenv()
SAMBANOVA_API_KEY = "34115dcb-baab-4390-ab5c-e501666f9f4e"
SAMBANOVA_URL = "https://api.sambanova.ai/v1/chat/completions"
# Initialize Trello client
trello_client = trello.TrelloClient(
api_key=os.getenv('TRELLO_API_KEY'),
token=os.getenv('TRELLO_TOKEN')
)
def get_trello_members():
"""Get all members from Trello workspace"""
try:
boards = trello_client.list_boards()
if not boards:
raise Exception("No Trello boards found")
board = boards[0]
members = board.get_members()
return {(member.full_name or member.username): member.id for member in members}
except Exception as e:
print(f"Error fetching Trello members: {str(e)}")
return {}
def process_audio_data(audio_path):
"""Process WAV audio file"""
try:
with wave.open(audio_path, 'rb') as wav_file:
# Get audio parameters
n_channels = wav_file.getnchannels()
sampwidth = wav_file.getsampwidth()
framerate = wav_file.getframerate()
n_frames = wav_file.getnframes()
# Read audio data
audio_data = wav_file.readframes(n_frames)
# Convert to mono if stereo
if n_channels == 2:
audio_data = audioop.tomono(audio_data, sampwidth, 1, 1)
# Convert to 16-bit if needed
if sampwidth != 2:
audio_data = audioop.lin2lin(audio_data, sampwidth, 2)
# Resample to 16kHz if needed
if framerate != 16000:
audio_data, _ = audioop.ratecv(audio_data, 2, 1, framerate, 16000, None)
framerate = 16000
return audio_data, framerate
except Exception as e:
print(f"Error processing audio: {str(e)}")
raise
def transcribe_audio(audio_file):
"""Convert audio to text using Speech Recognition"""
try:
# Initialize recognizer
recognizer = sr.Recognizer()
# Handle different audio input formats
if isinstance(audio_file, tuple):
audio_path = audio_file[0]
else:
audio_path = audio_file
print(f"Processing audio file: {audio_path}")
try:
# Load the audio file
with sr.AudioFile(audio_path) as source:
# Adjust for ambient noise
recognizer.adjust_for_ambient_noise(source)
# Read the audio data
audio_data = recognizer.record(source)
# Perform the transcription with increased timeout
text = recognizer.recognize_google(
audio_data,
language='en-US',
show_all=False,
with_confidence=False
)
if not text:
raise Exception("No transcription results returned")
return text.strip()
except sr.UnknownValueError:
raise Exception("Speech could not be understood. Please try speaking more clearly.")
except sr.RequestError as e:
raise Exception(f"Could not request results from Google Speech Recognition service; {e}")
except Exception as e:
print(f"Transcription error details: {str(e)}")
raise Exception(f"Transcription error: {str(e)}")
def analyze_emotion(text):
"""Analyze text emotion using Hugging Face API"""
API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions"
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
try:
response = requests.post(API_URL, headers=headers, json={"inputs": text})
emotions = response.json()
# Extract emotion scores
if isinstance(emotions, list) and len(emotions) > 0:
emotion_scores = [item for item in emotions[0] if item['label'] != 'neutral']
# Define emotion categories with their respective thresholds
urgent_emotions = {
'anger': 0.15,
'fear': 0.40,
'annoyance': 0.10,
'disapproval': 0.30,
'nervousness': 0.25,
'disgust': 0.20,
'disappointment': 0.40,
'grief': 0.05, # Added more emotional states
'remorse': 0.10,
'sadness': 0.40
}
high_priority_emotions = {
'desire': 0.25,
'excitement': 0.35,
'surprise': 0.15,
'curiosity': 0.25,
'optimism': 0.20,
'pride': 0.10,
'joy': 0.40, # Added more emotional states
'love': 0.25,
'admiration': 0.25,
'gratitude': 0.45
}
# Calculate weighted urgency scores
urgent_score = 0
high_priority_score = 0
for item in emotion_scores:
emotion = item['label']
score = item['score']
if emotion in urgent_emotions and score > urgent_emotions[emotion]:
urgent_score += score
elif emotion in high_priority_emotions and score > high_priority_emotions[emotion]:
high_priority_score += score
# Determine urgency level based on weighted scores
if urgent_score > 0.4: # Adjusted threshold
return "urgent"
elif high_priority_score > 0.3 or urgent_score > 0.2: # Adjusted thresholds
return "high"
return "normal"
return "normal"
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
return "normal"
def improve_task_description(text):
"""Improve and summarize task description using SambaNova API and emotion analysis"""
try:
# First analyze emotion to get initial urgency assessment
emotion_urgency = analyze_emotion(text)
prompt = f"""Please analyze and structure this task description, including determining its urgency level.
Original task: {text}
Initial emotion-based urgency assessment: {emotion_urgency}
Please provide:
1. A clear, concise task title
2. Key objectives
3. Suggested deadline (if not specified)
4. Any important details or requirements
5. Urgency level assessment (choose one: normal, high, urgent) based on:
- Time-sensitive language (ASAP, immediately, urgent, etc.)
- Deadlines mentioned
- Impact and consequences described
- Business criticality
- Emotional context and tone
Format the response with "URGENCY_LEVEL: [level]" as the first line, followed by the structured description.
Consider the emotion-based urgency assessment provided above when making the final urgency determination.
"""
headers = {
'Authorization': f'Bearer {SAMBANOVA_API_KEY}',
'Content-Type': 'application/json'
}
data = {
'messages': [
{'role': 'user', 'content': prompt}
],
'model': 'Meta-Llama-3.1-8B-Instruct',
'max_tokens': 2000,
'temperature': 0.7
}
response = requests.post(
SAMBANOVA_URL,
headers=headers,
json=data,
verify=False,
timeout=620
)
if response.status_code != 200:
raise Exception(f"SambaNova API request failed: {response.text}")
response_text = response.json()['choices'][0]['message']['content']
# Extract urgency level and description
lines = response_text.split('\n')
urgency_line = lines[0].strip()
# Use emotion-based urgency as fallback
urgency = emotion_urgency
if urgency_line.startswith("URGENCY_LEVEL:"):
level = urgency_line.split(":")[1].strip().lower()
if level in ["normal", "high", "urgent"]:
# Compare with emotion-based urgency and use the higher priority
urgency_levels = {"normal": 0, "high": 1, "urgent": 2}
if urgency_levels[level] > urgency_levels[emotion_urgency]:
urgency = level
description = '\n'.join(lines[1:]).strip()
else:
description = response_text
return description, urgency
except Exception as e:
raise Exception(f"Error improving task description: {str(e)}")
def create_trello_card(task_description, selected_members, location=None, urgency="normal"):
"""Create a Trello card with the improved task description"""
try:
boards = trello_client.list_boards()
if not boards:
raise Exception("No Trello boards found")
board = boards[0]
print(f"Using board: {board.name}")
lists = board.list_lists()
if not lists:
raise Exception("No lists found in the board")
todo_list = lists[0]
print(f"Using list: {todo_list.name}")
# Extract title and add timestamp
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M")
title = task_description.split('\n')[0]
# Add urgency to title
urgency_markers = {
"normal": "π",
"high": "β οΈ",
"urgent": "π΄"
}
urgency_marker = urgency_markers.get(urgency.lower(), "π")
formatted_title = f"[{timestamp}] {urgency_marker} {title}"
location_text = "Remote/Virtual"
location_coords = None
if location:
location_text = location
# Map urgency to status text
urgency_status = {
"normal": "Normal Priority",
"high": "High Priority",
"urgent": "URGENT"
}
status_text = urgency_status.get(urgency.lower(), "Normal Priority")
formatted_description = f"""π― TASK DETAILS
------------------------
{task_description}
π METADATA
------------------------
π Created: {timestamp}
π·οΈ Source: TaskWhisper AI
β‘ Priority: {status_text}
π Location: {location_text}
β
CHECKLIST
------------------------
- [ ] Task reviewed
- [ ] Requirements clear
- [ ] Timeline confirmed
- [ ] Resources identified
π NOTES
------------------------
Add your progress notes here...
"""
card = todo_list.add_card(
name=formatted_title,
desc=formatted_description
)
if location_coords:
card.set_pos(location_coords)
# Add label based on urgency
available_labels = board.get_labels()
urgency_colors = {
"normal": "blue",
"high": "yellow",
"urgent": "red"
}
label_color = urgency_colors.get(urgency.lower(), "blue")
# Find and add the appropriate label
priority_label = next((label for label in available_labels if label.color == label_color), None)
if priority_label:
card.add_label(priority_label)
else:
print(f"Warning: {label_color} label not found on board")
# Assign members to card
if selected_members:
for member_id in selected_members:
try:
member = next((m for m in board.get_members() if m.id == member_id), None)
if member:
card.add_member(member)
else:
print(f"Warning: Member with ID {member_id} not found on board")
except Exception as e:
print(f"Error adding member {member_id}: {str(e)}")
return card.url
except Exception as e:
print(f"Trello card creation error details: {str(e)}")
raise Exception(f"Error creating Trello card: {str(e)}")
def process_input(input_text, selected_members):
"""Process input text and create Trello card"""
try:
# Improve the task description and get urgency
improved_description, urgency = improve_task_description(input_text)
# Create Trello card with detected urgency
card_url = create_trello_card(improved_description, selected_members, urgency=urgency)
# Get member names for display
members_dict = get_trello_members()
member_names = [name for name, mid in members_dict.items()
if mid in selected_members]
urgency_emoji = {"normal": "π", "high": "β οΈ", "urgent": "π΄"}
return f"""
Original Input:
--------------
{input_text}
Improved Task Description:
------------------------
{improved_description}
Task Created in Trello:
----------------------
Priority: {urgency_emoji.get(urgency, "π")} {urgency.upper()}
Assigned to: {', '.join(member_names) if member_names else 'Not assigned'}
Card URL: {card_url}
"""
except Exception as e:
return f"Error processing input: {str(e)}"
def process_audio(audio_file, selected_members):
"""Process audio input and create Trello card"""
try:
if audio_file is None:
return "Error: No audio file or text provided"
print(f"Audio file type: {type(audio_file)}") # Debug print
print(f"Audio file content: {audio_file}") # Debug print
text = transcribe_audio(audio_file)
return process_input(text, selected_members)
except Exception as e:
print(f"Audio processing error details: {str(e)}") # Debug print
return f"Error processing audio: {str(e)}"
def process_audio_with_members(audio, selected_members):
"""Process audio with selected members"""
try:
if audio is None:
return "Error: Please provide an audio input (record or upload)"
print(f"Received audio input: {type(audio)}")
print(f"Audio content: {audio}")
# Convert selected member names to member IDs
members_dict = get_trello_members()
selected_member_ids = []
for name in (selected_members or []):
if name in members_dict:
selected_member_ids.append(members_dict[name])
else:
print(f"Warning: Member {name} not found in members dictionary")
try:
result = process_audio(audio, selected_member_ids)
return result
except Exception as e:
error_msg = str(e)
if "Speech could not be understood" in error_msg:
return "Could not understand the speech. Please try again with clearer audio."
elif "Could not request results" in error_msg:
return "Network error. Please check your internet connection and try again."
else:
return f"Error processing audio: {error_msg}"
except Exception as e:
print(f"Error in process_audio_with_members: {str(e)}")
return f"Error processing audio with members: {str(e)}"
def process_text_with_members(text, selected_members):
"""Process text with selected members"""
try:
# Convert selected member names to member IDs
members_dict = get_trello_members()
# Debug prints
print(f"Members dict: {members_dict}")
print(f"Selected members: {selected_members}")
selected_member_ids = []
for name in (selected_members or []):
if name in members_dict:
selected_member_ids.append(members_dict[name])
else:
print(f"Warning: Member {name} not found in members dictionary")
return process_input(text, selected_member_ids)
except Exception as e:
print(f"Error in process_text_with_members: {str(e)}")
return f"Error processing text with members: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="TaskWhisper - Smart Task Manager") as interface:
gr.Markdown("# ποΈ TaskWhisper - Smart Task Manager")
gr.Markdown("Record audio or type your task. The AI will help improve and structure your task description.")
# Get Trello members for the dropdown
members = get_trello_members()
with gr.Tab("Audio Input"):
audio_input = gr.Audio(
label="Record or Upload Audio",
sources=["microphone", "upload"],
type="filepath",
format="wav",
interactive=True
)
gr.Markdown("""
*Instructions:*
- Use microphone to record directly
- Or upload an audio file (WAV format)
- Speak clearly for better results
- Keep background noise minimal
""")
member_dropdown_audio = gr.Dropdown(
choices=list(members.keys()),
multiselect=True,
label="Assign to Members",
info="Select one or more members to assign the task",
value=[]
)
audio_button = gr.Button("Process Audio")
with gr.Tab("Text Input"):
text_input = gr.Textbox(
lines=3,
placeholder="Type your task here (e.g., 'Need to prepare quarterly report with sales data by next Friday')",
label="Text Input"
)
member_dropdown_text = gr.Dropdown(
choices=list(members.keys()),
multiselect=True,
label="Assign to Members",
info="Select one or more members to assign the task",
value=[] # Initialize with empty selection
)
text_button = gr.Button("Process Text")
output = gr.Textbox(
label="Task Details",
lines=15
)
# Set up event handlers
audio_button.click(
fn=process_audio_with_members,
inputs=[audio_input, member_dropdown_audio],
outputs=output
)
text_button.click(
fn=process_text_with_members,
inputs=[text_input, member_dropdown_text],
outputs=output
)
if __name__ == "__main__":
interface.launch(share=True) |