Pamudu13 commited on
Commit
bd70403
·
verified ·
1 Parent(s): a5c9a00

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +124 -136
app.py CHANGED
@@ -1,64 +1,75 @@
1
  import gradio as gr
2
  import os
3
- api_token = os.getenv("HF_TOKEN")
4
-
5
-
6
- from langchain_community.vectorstores import FAISS
7
- from langchain_community.document_loaders import PyPDFLoader
8
  from langchain.text_splitter import RecursiveCharacterTextSplitter
9
- from langchain_community.vectorstores import Chroma
 
10
  from langchain.chains import ConversationalRetrievalChain
11
- from langchain_community.embeddings import HuggingFaceEmbeddings
12
- from langchain_community.llms import HuggingFacePipeline
13
- from langchain.chains import ConversationChain
14
  from langchain.memory import ConversationBufferMemory
15
  from langchain_community.llms import HuggingFaceEndpoint
16
- import torch
17
 
18
- list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
 
 
19
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
20
 
21
- # Load and split PDF document
22
- def load_doc(list_file_path):
23
- # Processing for one document only
24
- # loader = PyPDFLoader(file_path)
25
- # pages = loader.load()
26
- loaders = [PyPDFLoader(x) for x in list_file_path]
27
- pages = []
28
- for loader in loaders:
29
- pages.extend(loader.load())
 
 
 
 
 
 
 
 
 
 
 
30
  text_splitter = RecursiveCharacterTextSplitter(
31
- chunk_size = 1024,
32
- chunk_overlap = 64
33
- )
34
- doc_splits = text_splitter.split_documents(pages)
35
- return doc_splits
36
 
37
- # Create vector database
38
  def create_db(splits):
 
39
  embeddings = HuggingFaceEmbeddings()
40
- vectordb = FAISS.from_documents(splits, embeddings)
41
  return vectordb
42
 
43
-
44
- # Initialize langchain LLM chain
45
- def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
46
- if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
47
- llm = HuggingFaceEndpoint(
48
- repo_id=llm_model,
49
- huggingfacehub_api_token = api_token,
50
- temperature = temperature,
51
- max_new_tokens = max_tokens,
52
- top_k = top_k,
53
- )
54
- else:
55
- llm = HuggingFaceEndpoint(
56
- huggingfacehub_api_token = api_token,
57
- repo_id=llm_model,
58
- temperature = temperature,
59
- max_new_tokens = max_tokens,
60
- top_k = top_k,
61
- )
 
 
 
 
62
 
63
  memory = ConversationBufferMemory(
64
  memory_key="chat_history",
@@ -66,151 +77,128 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
66
  return_messages=True
67
  )
68
 
69
- retriever=vector_db.as_retriever()
70
  qa_chain = ConversationalRetrievalChain.from_llm(
71
  llm,
72
- retriever=retriever,
73
- chain_type="stuff",
74
  memory=memory,
75
  return_source_documents=True,
76
  verbose=False,
77
  )
78
  return qa_chain
79
 
80
- # Initialize database
81
- def initialize_database(list_file_obj, progress=gr.Progress()):
82
- # Create a list of documents (when valid)
83
- list_file_path = [x.name for x in list_file_obj if x is not None]
84
- # Load document and create splits
85
- doc_splits = load_doc(list_file_path)
86
- # Create or load vector database
87
- vector_db = create_db(doc_splits)
88
- return vector_db, "Database created!"
89
-
90
- # Initialize LLM
91
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
92
- # print("llm_option",llm_option)
93
  llm_name = list_llm[llm_option]
94
- print("llm_name: ",llm_name)
95
- qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
96
  return qa_chain, "QA chain initialized. Chatbot is ready!"
97
 
98
-
99
  def format_chat_history(message, chat_history):
 
100
  formatted_chat_history = []
101
  for user_message, bot_message in chat_history:
102
  formatted_chat_history.append(f"User: {user_message}")
103
  formatted_chat_history.append(f"Assistant: {bot_message}")
104
  return formatted_chat_history
105
-
106
 
107
  def conversation(qa_chain, message, history):
 
108
  formatted_chat_history = format_chat_history(message, history)
109
- # Generate response using QA chain
110
  response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
 
111
  response_answer = response["answer"]
112
  if response_answer.find("Helpful Answer:") != -1:
113
  response_answer = response_answer.split("Helpful Answer:")[-1]
114
- response_sources = response["source_documents"]
115
- response_source1 = response_sources[0].page_content.strip()
116
- response_source2 = response_sources[1].page_content.strip()
117
- response_source3 = response_sources[2].page_content.strip()
118
- # Langchain sources are zero-based
119
- response_source1_page = response_sources[0].metadata["page"] + 1
120
- response_source2_page = response_sources[1].metadata["page"] + 1
121
- response_source3_page = response_sources[2].metadata["page"] + 1
122
- # Append user message and response to chat history
123
- new_history = history + [(message, response_answer)]
124
- return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
125
 
126
-
127
- def upload_file(file_obj):
128
- list_file_path = []
129
- for idx, file in enumerate(file_obj):
130
- file_path = file_obj.name
131
- list_file_path.append(file_path)
132
- return list_file_path
133
-
 
 
 
 
 
134
 
135
  def demo():
136
- # with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo:
137
- with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
138
  vector_db = gr.State()
139
  qa_chain = gr.State()
140
- gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
141
- gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. \
142
- <b>Please do not upload confidential documents.</b>
143
- """)
144
  with gr.Row():
145
- with gr.Column(scale = 86):
146
- gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
147
  with gr.Row():
148
- document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
149
  with gr.Row():
150
  db_btn = gr.Button("Create vector database")
151
  with gr.Row():
152
- db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
153
- gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
 
154
  with gr.Row():
155
- llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False
156
  with gr.Row():
157
  with gr.Accordion("LLM input parameters", open=False):
158
- with gr.Row():
159
- slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
160
- with gr.Row():
161
- slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
162
- with gr.Row():
163
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
164
  with gr.Row():
165
  qachain_btn = gr.Button("Initialize Question Answering Chatbot")
166
  with gr.Row():
167
- llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",
168
 
169
- with gr.Column(scale = 200):
170
- gr.Markdown("<b>Step 2 - Chat with your Document</b>")
171
  chatbot = gr.Chatbot(height=505)
172
- with gr.Accordion("Relevent context from the source document", open=False):
173
  with gr.Row():
174
  doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
175
- source1_page = gr.Number(label="Page", scale=1)
176
  with gr.Row():
177
  doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
178
- source2_page = gr.Number(label="Page", scale=1)
179
  with gr.Row():
180
  doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
181
- source3_page = gr.Number(label="Page", scale=1)
182
  with gr.Row():
183
  msg = gr.Textbox(placeholder="Ask a question", container=True)
184
  with gr.Row():
185
  submit_btn = gr.Button("Submit")
186
  clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
187
-
188
- # Preprocessing events
189
- db_btn.click(initialize_database, \
190
- inputs=[document], \
191
- outputs=[vector_db, db_progress])
192
- qachain_btn.click(initialize_LLM, \
193
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
194
- outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
195
- inputs=None, \
196
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
197
- queue=False)
198
 
199
- # Chatbot events
200
- msg.submit(conversation, \
201
- inputs=[qa_chain, msg, chatbot], \
202
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
203
- queue=False)
204
- submit_btn.click(conversation, \
205
- inputs=[qa_chain, msg, chatbot], \
206
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
207
- queue=False)
208
- clear_btn.click(lambda:[None,"",0,"",0,"",0], \
209
- inputs=None, \
210
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
211
- queue=False)
212
- demo.queue().launch(debug=True)
 
 
 
 
 
 
 
 
 
213
 
 
214
 
215
  if __name__ == "__main__":
216
- demo()
 
1
  import gradio as gr
2
  import os
3
+ from bs4 import BeautifulSoup
4
+ import requests
 
 
 
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain_community.embeddings import HuggingFaceEmbeddings
7
+ from langchain_community.vectorstores import FAISS
8
  from langchain.chains import ConversationalRetrievalChain
 
 
 
9
  from langchain.memory import ConversationBufferMemory
10
  from langchain_community.llms import HuggingFaceEndpoint
 
11
 
12
+ # Initialize environment
13
+ api_token =os.getenv("HF_TOKEN")
14
+ list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
15
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
16
 
17
+ def scrape_website(url):
18
+ """Scrape text content from a website"""
19
+ try:
20
+ response = requests.get(url)
21
+ soup = BeautifulSoup(response.text, 'html.parser')
22
+
23
+ for script in soup(["script", "style"]):
24
+ script.decompose()
25
+
26
+ text = soup.get_text()
27
+ lines = (line.strip() for line in text.splitlines())
28
+ chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
29
+ text = ' '.join(chunk for chunk in chunks if chunk)
30
+
31
+ return text
32
+ except Exception as e:
33
+ return f"Error scraping website: {str(e)}"
34
+
35
+ def process_text(text):
36
+ """Split text into chunks"""
37
  text_splitter = RecursiveCharacterTextSplitter(
38
+ chunk_size=1024,
39
+ chunk_overlap=64
40
+ )
41
+ chunks = text_splitter.split_text(text)
42
+ return chunks
43
 
 
44
  def create_db(splits):
45
+ """Create vector database"""
46
  embeddings = HuggingFaceEmbeddings()
47
+ vectordb = FAISS.from_documents([{"page_content": text, "metadata": {}} for text in splits], embeddings)
48
  return vectordb
49
 
50
+ def initialize_database(url, progress=gr.Progress()):
51
+ """Initialize database from URL"""
52
+ # Scrape website content
53
+ text_content = scrape_website(url)
54
+ if text_content.startswith("Error"):
55
+ return None, text_content
56
+
57
+ # Create text chunks
58
+ doc_splits = process_text(text_content)
59
+
60
+ # Create vector database
61
+ vector_db = create_db(doc_splits)
62
+ return vector_db, "Database created successfully!"
63
+
64
+ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
65
+ """Initialize LLM chain"""
66
+ llm = HuggingFaceEndpoint(
67
+ repo_id=llm_model,
68
+ huggingfacehub_api_token=api_token,
69
+ temperature=temperature,
70
+ max_new_tokens=max_tokens,
71
+ top_k=top_k,
72
+ )
73
 
74
  memory = ConversationBufferMemory(
75
  memory_key="chat_history",
 
77
  return_messages=True
78
  )
79
 
 
80
  qa_chain = ConversationalRetrievalChain.from_llm(
81
  llm,
82
+ retriever=vector_db.as_retriever(),
83
+ chain_type="stuff",
84
  memory=memory,
85
  return_source_documents=True,
86
  verbose=False,
87
  )
88
  return qa_chain
89
 
 
 
 
 
 
 
 
 
 
 
 
90
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
91
+ """Initialize LLM with selected options"""
92
  llm_name = list_llm[llm_option]
93
+ qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
 
94
  return qa_chain, "QA chain initialized. Chatbot is ready!"
95
 
 
96
  def format_chat_history(message, chat_history):
97
+ """Format chat history for the model"""
98
  formatted_chat_history = []
99
  for user_message, bot_message in chat_history:
100
  formatted_chat_history.append(f"User: {user_message}")
101
  formatted_chat_history.append(f"Assistant: {bot_message}")
102
  return formatted_chat_history
 
103
 
104
  def conversation(qa_chain, message, history):
105
+ """Handle conversation with the model"""
106
  formatted_chat_history = format_chat_history(message, history)
 
107
  response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
108
+
109
  response_answer = response["answer"]
110
  if response_answer.find("Helpful Answer:") != -1:
111
  response_answer = response_answer.split("Helpful Answer:")[-1]
 
 
 
 
 
 
 
 
 
 
 
112
 
113
+ response_sources = response["source_documents"][:3]
114
+ sources = []
115
+ for i in range(3):
116
+ if i < len(response_sources):
117
+ sources.append((response_sources[i].page_content.strip(), 1))
118
+ else:
119
+ sources.append(("", 1))
120
+
121
+ new_history = history + [(message, response_answer)]
122
+ return (qa_chain, gr.update(value=""), new_history,
123
+ sources[0][0], sources[0][1],
124
+ sources[1][0], sources[1][1],
125
+ sources[2][0], sources[2][1])
126
 
127
  def demo():
128
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
 
129
  vector_db = gr.State()
130
  qa_chain = gr.State()
131
+
132
+ gr.HTML("<center><h1>RAG Website Chatbot</h1></center>")
133
+ gr.Markdown("""<b>Query any website content!</b> This AI agent performs retrieval augmented generation (RAG) on website content.""")
134
+
135
  with gr.Row():
136
+ with gr.Column(scale=86):
137
+ gr.Markdown("<b>Step 1 - Enter Website URL and Initialize RAG pipeline</b>")
138
  with gr.Row():
139
+ url_input = gr.Textbox(label="Website URL", placeholder="Enter website URL here...")
140
  with gr.Row():
141
  db_btn = gr.Button("Create vector database")
142
  with gr.Row():
143
+ db_progress = gr.Textbox(value="Not initialized", show_label=False)
144
+
145
+ gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>")
146
  with gr.Row():
147
+ llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
148
  with gr.Row():
149
  with gr.Accordion("LLM input parameters", open=False):
150
+ slider_temperature = gr.Slider(0.01, 1.0, 0.5, step=0.1, label="Temperature")
151
+ slider_maxtokens = gr.Slider(128, 9192, 4096, step=128, label="Max New Tokens")
152
+ slider_topk = gr.Slider(1, 10, 3, step=1, label="top-k")
 
 
 
153
  with gr.Row():
154
  qachain_btn = gr.Button("Initialize Question Answering Chatbot")
155
  with gr.Row():
156
+ llm_progress = gr.Textbox(value="Not initialized", show_label=False)
157
 
158
+ with gr.Column(scale=200):
159
+ gr.Markdown("<b>Step 2 - Chat about the Website Content</b>")
160
  chatbot = gr.Chatbot(height=505)
161
+ with gr.Accordion("Relevant context from the source", open=False):
162
  with gr.Row():
163
  doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
164
+ source1_page = gr.Number(label="Section", scale=1)
165
  with gr.Row():
166
  doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
167
+ source2_page = gr.Number(label="Section", scale=1)
168
  with gr.Row():
169
  doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
170
+ source3_page = gr.Number(label="Section", scale=1)
171
  with gr.Row():
172
  msg = gr.Textbox(placeholder="Ask a question", container=True)
173
  with gr.Row():
174
  submit_btn = gr.Button("Submit")
175
  clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
 
 
 
 
 
 
 
 
 
 
 
176
 
177
+ # Event handlers
178
+ db_btn.click(initialize_database,
179
+ inputs=[url_input],
180
+ outputs=[vector_db, db_progress])
181
+
182
+ qachain_btn.click(initialize_LLM,
183
+ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
184
+ outputs=[qa_chain, llm_progress])
185
+
186
+ msg.submit(conversation,
187
+ inputs=[qa_chain, msg, chatbot],
188
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page,
189
+ doc_source2, source2_page, doc_source3, source3_page])
190
+
191
+ submit_btn.click(conversation,
192
+ inputs=[qa_chain, msg, chatbot],
193
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page,
194
+ doc_source2, source2_page, doc_source3, source3_page])
195
+
196
+ clear_btn.click(lambda: [None, "", 0, "", 0, "", 0],
197
+ inputs=None,
198
+ outputs=[chatbot, doc_source1, source1_page,
199
+ doc_source2, source2_page, doc_source3, source3_page])
200
 
201
+ demo.queue().launch(debug=True)
202
 
203
  if __name__ == "__main__":
204
+ demo()