File size: 7,986 Bytes
53e65b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import csv
from typing import Dict, List
import os
import logging

logger = logging.getLogger(__name__)

class CSVHandler:
    def __init__(self):
        self.clusters_file = 'clusters.csv'
        self.completed_posts_file = 'completed_posts.csv'

    def get_cluster_data(self) -> Dict:
        try:
            with open(self.clusters_file, 'r', newline='') as file:
                reader = csv.DictReader(file)
                for i, row in enumerate(reader, start=2):  # start=2 because row 1 is header
                    if row['Status'].lower() == 'no':
                        return {
                            'Keywords': row['Keywords'],
                            'Intent': row['Intent'],
                            'Primary Keyword': row['Primary Keyword'],
                            'row_number': i
                        }
            return None
        except Exception as e:
            print(f"Error reading clusters CSV: {e}")
            return None

    def get_previous_posts(self) -> List[Dict]:
        try:
            posts = []
            with open(self.completed_posts_file, 'r', newline='') as file:
                reader = csv.DictReader(file)
                for row in reader:
                    posts.append({
                        'title': row['Title'],
                        'keywords': row['Keywords'],
                        'summary': row['Meta Description'],
                        'url': row['URL']
                    })
            return posts
        except Exception as e:
            print(f"Error reading completed posts CSV: {e}")
            return []

    def mark_cluster_complete(self, row_number: int):
        try:
            # Read all rows
            rows = []
            with open(self.clusters_file, 'r', newline='', encoding='utf-8') as file:
                reader = csv.reader(file)
                header = next(reader)  # Get header row
                
                # Find Status column index, default to last column if not found
                status_index = header.index('Status') if 'Status' in header else -1
                if status_index == -1:
                    header.append('Status')
                    status_index = len(header) - 1
                
                rows = [header]
                rows.extend(list(reader))

            # Update status to 'completed' for the specified row
            if row_number < len(rows):
                # Ensure row has enough columns
                while len(rows[row_number]) <= status_index:
                    rows[row_number].append('')
                rows[row_number][status_index] = 'completed'

            # Write back all rows
            with open(self.clusters_file, 'w', newline='', encoding='utf-8') as file:
                writer = csv.writer(file)
                writer.writerows(rows)

        except Exception as e:
            logger.error(f"Error updating cluster status: {e}")
            raise

    def log_completed_post(self, metadata: Dict):
        try:
            with open(self.completed_posts_file, 'a', newline='') as file:
                writer = csv.writer(file)
                writer.writerow([
                    metadata['title'],
                    metadata['keywords'],
                    metadata['meta_description'],
                    f"https://yourblog.com/{metadata['slug']}"
                ])
        except Exception as e:
            print(f"Error logging completed post: {e}")

    def get_all_clusters(self):
        """Get all uncompleted clusters from the CSV file."""
        clusters = []
        try:
            with open(self.clusters_file, 'r', newline='', encoding='utf-8') as file:
                reader = csv.DictReader(file)
                for row_number, row in enumerate(reader, start=1):
                    # Check if Status column exists, if not or empty, treat as not completed
                    status = row.get('Status', '').lower()
                    if status != 'completed':
                        cluster_data = {
                            'Keywords': row.get('Keywords', ''),
                            'Intent': row.get('Intent', ''),
                            'Primary Keyword': row.get('Primary Keyword', ''),
                            'row_number': row_number,
                            'Status': status
                        }
                        # Validate required fields
                        if all(cluster_data[field] for field in ['Keywords', 'Intent', 'Primary Keyword']):
                            clusters.append(cluster_data)
                        else:
                            logger.warning(f"Row {row_number}: Missing required fields, skipping")
                return clusters
        except Exception as e:
            logger.error(f"Error reading clusters file: {e}")
            raise

    def process_uploaded_csv(self, csv_content: str) -> List[Dict]:
        """
        Process an uploaded CSV content string and return cluster data for blog generation.
        
        Args:
            csv_content (str): The decoded CSV content as a string
            
        Returns:
            List[Dict]: List of cluster data dictionaries
        """
        clusters = []
        try:
            # Split the content into lines and process as CSV
            from io import StringIO
            csv_file = StringIO(csv_content)
            reader = csv.DictReader(csv_file)
            
            for row_number, row in enumerate(reader, start=1):
                # Validate required columns
                required_columns = ['Keywords', 'Intent', 'Primary Keyword']
                if not all(col in row for col in required_columns):
                    logger.error(f"Row {row_number}: Missing required columns. Required: {required_columns}")
                    continue
                    
                cluster_data = {
                    'Keywords': row['Keywords'],
                    'Intent': row['Intent'],
                    'Primary Keyword': row['Primary Keyword'],
                    'row_number': row_number
                }
                clusters.append(cluster_data)
                
            logger.info(f"Successfully processed {len(clusters)} clusters from uploaded CSV")
            return clusters
            
        except Exception as e:
            logger.error(f"Error processing uploaded CSV: {e}")
            raise

    def process_csv_text(self, csv_text: str) -> List[Dict]:
        """
        Process CSV content provided as a text string and return cluster data for blog generation.
        
        Args:
            csv_text (str): The CSV content as a string
            
        Returns:
            List[Dict]: List of cluster data dictionaries
        """
        clusters = []
        try:
            # Split the text into lines
            from io import StringIO
            csv_file = StringIO(csv_text.strip())
            reader = csv.DictReader(csv_file)
            
            for row_number, row in enumerate(reader, start=1):
                # Validate required columns
                required_columns = ['Keywords', 'Intent', 'Primary Keyword']
                if not all(col in row for col in required_columns):
                    logger.error(f"Row {row_number}: Missing required columns. Required: {required_columns}")
                    continue
                    
                cluster_data = {
                    'Keywords': row['Keywords'],
                    'Intent': row['Intent'],
                    'Primary Keyword': row['Primary Keyword'],
                    'row_number': row_number
                }
                clusters.append(cluster_data)
                
            logger.info(f"Successfully processed {len(clusters)} clusters from CSV text")
            return clusters
            
        except Exception as e:
            logger.error(f"Error processing CSV text: {e}")
            raise