File size: 3,506 Bytes
21753a3
d2c6ac6
 
 
 
b14a2f9
21753a3
 
 
b14a2f9
1fda785
b14a2f9
 
d2c6ac6
b14a2f9
 
 
 
21753a3
d2c6ac6
 
 
 
 
 
21753a3
 
 
94f2884
21753a3
 
 
 
 
d2c6ac6
 
 
 
21753a3
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c6ac6
21753a3
94f2884
21753a3
 
 
 
 
 
 
 
d2c6ac6
21753a3
d2c6ac6
21753a3
1fda785
 
21753a3
1fda785
21753a3
 
1fda785
 
21753a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c6ac6
21753a3
 
 
 
 
 
 
fb8d4f3
21753a3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from flask import Flask, request, jsonify, render_template
import fitz  # PyMuPDF for PDF text extraction
import faiss  # FAISS for vector search
import numpy as np
from sentence_transformers import SentenceTransformer
from huggingface_hub import InferenceClient
from typing import List, Tuple

app = Flask(__name__)

# Default settings
class ChatConfig:
    MODEL = "google/gemma-3-27b-it"
    DEFAULT_SYSTEM_MSG = "You are an AI assistant answering only based on the uploaded PDF."
    DEFAULT_MAX_TOKENS = 512
    DEFAULT_TEMP = 0.3
    DEFAULT_TOP_P = 0.95

client = InferenceClient(ChatConfig.MODEL)
embed_model = SentenceTransformer("all-MiniLM-L6-v2")  # Lightweight embedding model
vector_dim = 384  # Embedding size
index = faiss.IndexFlatL2(vector_dim)  # FAISS index

documents = []  # Store extracted text

def extract_text_from_pdf(pdf_path):
    """Extracts text from PDF"""
    doc = fitz.open(pdf_path)
    text_chunks = [page.get_text("text") for page in doc]
    return text_chunks

def create_vector_db(text_chunks):
    """Embeds text chunks and adds them to FAISS index"""
    global documents, index
    documents = text_chunks
    embeddings = embed_model.encode(text_chunks)
    index.add(np.array(embeddings, dtype=np.float32))

def search_relevant_text(query):
    """Finds the most relevant text chunk for the given query"""
    query_embedding = embed_model.encode([query])
    _, closest_idx = index.search(np.array(query_embedding, dtype=np.float32), k=3)
    return "\n".join([documents[i] for i in closest_idx[0]])

def generate_response(
    message: str,
    history: List[Tuple[str, str]],
    system_message: str = ChatConfig.DEFAULT_SYSTEM_MSG,
    max_tokens: int = ChatConfig.DEFAULT_MAX_TOKENS,
    temperature: float = ChatConfig.DEFAULT_TEMP,
    top_p: float = ChatConfig.DEFAULT_TOP_P
) -> str:
    if not documents:
        return "Please upload a PDF first."

    context = search_relevant_text(message)  # Get relevant content from PDF

    messages = [{"role": "system", "content": system_message}]
    for user_msg, bot_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if bot_msg:
            messages.append({"role": "assistant", "content": bot_msg})

    messages.append({"role": "user", "content": f"Context: {context}\nQuestion: {message}"})

    response = ""
    for chunk in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = chunk.choices[0].delta.content or ""
        response += token
    return response

@app.route('/')
def index():
    """Serve the HTML page for the user interface"""
    return render_template('index.html')

@app.route('/upload_pdf', methods=['POST'])
def upload_pdf():
    """Handle PDF upload"""
    file = request.files['pdf']
    pdf_path = f"uploaded_files/{file.filename}"
    file.save(pdf_path)

    # Extract text and create vector database
    text_chunks = extract_text_from_pdf(pdf_path)
    create_vector_db(text_chunks)

    return jsonify({"message": "PDF uploaded and indexed successfully!"})

@app.route('/ask_question', methods=['POST'])
def ask_question():
    """Handle user question"""
    message = request.json.get('message')
    history = request.json.get('history', [])
    response = generate_response(message, history)
    return jsonify({"response": response})

if __name__ == '__main__':
    app.run(debug=True)