File size: 2,656 Bytes
94f2884
 
 
d2c6ac6
 
 
 
b14a2f9
6fbaae6
b14a2f9
1fda785
b14a2f9
 
d2c6ac6
b14a2f9
 
 
 
28e10d5
 
 
d2c6ac6
 
 
 
 
 
94f2884
d2c6ac6
94f2884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c6ac6
 
 
 
94f2884
1fda785
94f2884
 
 
d2c6ac6
94f2884
 
 
 
 
 
d2c6ac6
94f2884
fb8d4f3
 
94f2884
fb8d4f3
d2c6ac6
94f2884
1fda785
 
fb8d4f3
1fda785
fb8d4f3
 
1fda785
 
94f2884
d2c6ac6
94f2884
fb8d4f3
7cade68
1a15ea7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from fastapi import FastAPI, Query
from fastapi.responses import FileResponse, JSONResponse
import uvicorn
import fitz  # PyMuPDF for PDF text extraction
import faiss  # FAISS for vector search
import numpy as np
from sentence_transformers import SentenceTransformer
from huggingface_hub import InferenceClient
import os

# Default settings
class ChatConfig:
    MODEL = "google/gemma-3-27b-it"
    DEFAULT_SYSTEM_MSG = "You are an AI assistant answering only based on the uploaded PDF."
    DEFAULT_MAX_TOKENS = 512
    DEFAULT_TEMP = 0.3
    DEFAULT_TOP_P = 0.95

HF_TOKEN = os.getenv("HF_TOKEN")  # Fetch from environment variables

client = InferenceClient(ChatConfig.MODEL, token=HF_TOKEN)
embed_model = SentenceTransformer("all-MiniLM-L6-v2")  # Lightweight embedding model
vector_dim = 384  # Embedding size
index = faiss.IndexFlatL2(vector_dim)  # FAISS index

documents = []  # Store extracted text

app = FastAPI()

@app.get("/")
def serve_homepage():
    """Serves the HTML interface."""
    return FileResponse("index.html")

@app.post("/upload_pdf/")
async def upload_pdf(file_path: str):
    """Handles PDF file processing."""
    global documents

    # Extract text from PDF
    doc = fitz.open(file_path)
    text_chunks = [page.get_text("text") for page in doc]
    
    # Create vector database
    documents = text_chunks
    embeddings = embed_model.encode(text_chunks)
    index.add(np.array(embeddings, dtype=np.float32))

    return JSONResponse({"message": "PDF uploaded and indexed successfully!"})

@app.get("/chat/")
def chat_with_pdf(msg: str = Query(..., title="User Message")):
    """Handles user queries and returns AI-generated responses."""
    if not documents:
        return JSONResponse({"response": "Please upload a PDF first."})

    # Retrieve relevant context
    query_embedding = embed_model.encode([msg])
    _, closest_idx = index.search(np.array(query_embedding, dtype=np.float32), k=3)
    context = "\n".join([documents[i] for i in closest_idx[0]])

    # Generate AI response
    messages = [
        {"role": "system", "content": ChatConfig.DEFAULT_SYSTEM_MSG},
        {"role": "user", "content": f"Context: {context}\nQuestion: {msg}"}
    ]

    response_text = ""
    for chunk in client.chat_completion(
        messages,
        max_tokens=ChatConfig.DEFAULT_MAX_TOKENS,
        stream=True,
        temperature=ChatConfig.DEFAULT_TEMP,
        top_p=ChatConfig.DEFAULT_TOP_P,
    ):
        token = chunk.choices[0].delta.content or ""
        response_text += token

    return JSONResponse({"response": response_text})

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)