Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
app = Flask(__name__)
|
5 |
+
|
6 |
+
# Initialize the sentiment analysis pipeline
|
7 |
+
sentiment_classifier = pipeline("sentiment-analysis")
|
8 |
+
|
9 |
+
def analyze_priority(text):
|
10 |
+
# Get sentiment analysis
|
11 |
+
sentiment_result = sentiment_classifier(text)[0]
|
12 |
+
sentiment_score = sentiment_result['score']
|
13 |
+
sentiment_label = sentiment_result['label']
|
14 |
+
|
15 |
+
# Convert text to lowercase for keyword checking
|
16 |
+
text = text.lower()
|
17 |
+
|
18 |
+
# Define urgency indicators
|
19 |
+
urgent_indicators = ['urgent', 'emergency', 'asap', 'immediately', 'critical']
|
20 |
+
high_indicators = ['important', 'priority', 'soon', 'significant']
|
21 |
+
|
22 |
+
# Check for urgent keywords
|
23 |
+
has_urgent = any(word in text for word in urgent_indicators)
|
24 |
+
has_high = any(word in text for word in high_indicators)
|
25 |
+
|
26 |
+
# Determine priority based on both sentiment and keywords
|
27 |
+
if has_urgent or (sentiment_label == 'NEGATIVE' and sentiment_score > 0.8):
|
28 |
+
return "urgent"
|
29 |
+
elif has_high or (sentiment_label == 'NEGATIVE' and sentiment_score > 0.6):
|
30 |
+
return "high"
|
31 |
+
elif sentiment_label == 'NEGATIVE':
|
32 |
+
return "normal"
|
33 |
+
else:
|
34 |
+
return "low"
|
35 |
+
|
36 |
+
@app.route('/analyze-priority', methods=['GET'])
|
37 |
+
def get_priority():
|
38 |
+
text = request.args.get('text', '')
|
39 |
+
|
40 |
+
if not text:
|
41 |
+
return jsonify({
|
42 |
+
'error': 'No text provided',
|
43 |
+
'status': 400
|
44 |
+
}), 400
|
45 |
+
|
46 |
+
try:
|
47 |
+
priority = analyze_priority(text)
|
48 |
+
sentiment_result = sentiment_classifier(text)[0]
|
49 |
+
|
50 |
+
return jsonify({
|
51 |
+
'text': text,
|
52 |
+
'priority': priority,
|
53 |
+
'status': 200,
|
54 |
+
'details': {
|
55 |
+
'sentiment': sentiment_result
|
56 |
+
}
|
57 |
+
})
|
58 |
+
except Exception as e:
|
59 |
+
return jsonify({
|
60 |
+
'error': f'Analysis failed: {str(e)}',
|
61 |
+
'status': 500
|
62 |
+
}), 500
|
63 |
+
|
64 |
+
if __name__ == '__main__':
|
65 |
+
app.run(debug=True)
|