Spaces:
Sleeping
Sleeping
File size: 8,869 Bytes
f1a04ea dc88c5a f1a04ea b868160 f1a04ea b868160 f1a04ea 4ce93da f1a04ea a2b8ed7 f1a04ea 17b21bb f1a04ea a2b8ed7 f1a04ea 86e3d75 f1a04ea 86e3d75 f1a04ea 86e3d75 f1a04ea cfcc518 dc88c5a 6e8e412 dc88c5a 6e8e412 f1a04ea 6e8e412 f1a04ea 6e8e412 f1a04ea 6e8e412 c005795 f1a04ea 86e3d75 6f31366 f1a04ea 6f31366 f1a04ea 6e8e412 f1a04ea aaf779e 6e8e412 6f31366 f1a04ea 6f31366 f1a04ea 6f31366 f1a04ea 6f31366 f1a04ea 6ab6544 f1a04ea 6e8e412 f1a04ea 6ab6544 4ce93da f1a04ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
from flask import Flask, request, jsonify
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFaceHub
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
import os
from dotenv import load_dotenv
from flask_cors import CORS
import base64
import tempfile
import io
from pathlib import Path
# Load environment variables
load_dotenv()
app = Flask(__name__)
CORS(app)
# Increase maximum content length to 32MB
app.config['MAX_CONTENT_LENGTH'] = 32 * 1024 * 1024
# Global variables
qa_chain = None
vector_db = None
api_token =os.getenv("HF_TOKEN")
pdf_chunks = {}
app.config['UPLOAD_FOLDER'] = '/tmp/temp_uploads'
# Create upload folder if it doesn't exist
Path(app.config['UPLOAD_FOLDER']).mkdir(parents=True, exist_ok=True)
# Available LLM models
LLM_MODELS = {
"llama": "meta-llama/Meta-Llama-3-8B-Instruct",
"mistral": "mistralai/Mistral-7B-Instruct-v0.2"
}
# Add these global variables
current_upload = {
'filename': None,
'chunks': [],
'filesize': 0
}
def load_doc(file_paths):
"""Load and split multiple PDF documents"""
loaders = [PyPDFLoader(path) for path in file_paths]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=64
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits):
"""Create vector database from document splits"""
embeddings = HuggingFaceEmbeddings()
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
"""Initialize the LLM chain with correct parameters"""
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs={
"temperature": float(temperature),
"max_new_tokens": int(max_tokens),
"top_k": int(top_k)
},
huggingfacehub_api_token=api_token
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
def format_chat_history(message, chat_history):
"""Format chat history for the LLM"""
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
@app.route('/upload', methods=['POST'])
def upload_pdf():
"""Handle PDF upload and database initialization"""
global vector_db
if 'pdf_base64' not in request.json:
return jsonify({'error': 'No PDF data provided'}), 400
try:
# Get base64 PDF and filename
pdf_base64 = request.json['pdf_base64']
filename = request.json.get('filename', 'uploaded.pdf')
# Create temp directory if it doesn't exist
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
temp_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
try:
# Decode and save PDF
pdf_data = base64.b64decode(pdf_base64)
with open(temp_path, 'wb') as f:
f.write(pdf_data)
# Process document
doc_splits = load_doc([temp_path])
vector_db = create_db(doc_splits)
return jsonify({'message': 'PDF processed successfully'}), 200
finally:
# Clean up
if os.path.exists(temp_path):
os.remove(temp_path)
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/initialize-llm', methods=['POST'])
def init_llm():
"""Initialize the LLM with parameters"""
global qa_chain, vector_db
if vector_db is None:
return jsonify({'error': 'Please upload PDFs first'}), 400
data = request.json
model_name = data.get('model', 'llama') # Default to 'llama'
temperature = float(data.get('temperature', 0.5))
max_tokens = int(data.get('max_tokens', 4096))
top_k = int(data.get('top_k', 3))
if model_name not in LLM_MODELS:
return jsonify({'error': 'Invalid model name'}), 400
try:
qa_chain = initialize_llmchain(
llm_model=LLM_MODELS[model_name],
temperature=temperature,
max_tokens=max_tokens,
top_k=top_k,
vector_db=vector_db
)
return jsonify({'message': 'LLM initialized successfully'}), 200
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/chat', methods=['POST'])
def chat():
"""Handle chat interactions"""
global qa_chain
if qa_chain is None:
return jsonify({'error': 'LLM not initialized'}), 400
data = request.json
question = data.get('question')
chat_history = data.get('chat_history', [])
if not question:
return jsonify({'error': 'No question provided'}), 400
try:
formatted_history = format_chat_history(question, chat_history)
result = qa_chain({"question": question, "chat_history": formatted_history})
# Process the response
answer = result['answer']
if "Helpful Answer:" in answer:
answer = answer.split("Helpful Answer:")[-1]
# Extract sources
sources = []
for doc in result['source_documents'][:3]:
sources.append({
'content': doc.page_content.strip(),
'page': doc.metadata.get('page', 0) + 1 # Convert to 1-based page numbers
})
response = {
'answer': answer,
'sources': sources
}
return jsonify(response), 200
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/upload-local', methods=['POST'])
def upload_local():
"""Handle PDF upload from local file system"""
global vector_db
data = request.json
file_path = data.get('file_path')
if not file_path or not os.path.exists(file_path):
return jsonify({'error': 'File not found'}), 400
try:
# Process document
doc_splits = load_doc([file_path])
vector_db = create_db(doc_splits)
return jsonify({'message': 'PDF processed successfully'}), 200
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/start-upload', methods=['POST'])
def start_upload():
"""Initialize a new file upload"""
global current_upload
data = request.json
current_upload = {
'filename': data['filename'],
'chunks': [],
'filesize': data['filesize']
}
return jsonify({'message': 'Upload started'}), 200
@app.route('/upload-chunk', methods=['POST'])
def upload_chunk():
"""Handle a chunk of the file"""
global current_upload
if not current_upload['filename']:
return jsonify({'error': 'No upload in progress'}), 400
try:
chunk = base64.b64decode(request.json['chunk'])
current_upload['chunks'].append(chunk)
return jsonify({'message': 'Chunk received'}), 200
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/finish-upload', methods=['POST'])
def finish_upload():
"""Process the complete file"""
global current_upload, vector_db
if not current_upload['filename']:
return jsonify({'error': 'No upload in progress'}), 400
try:
# Create temp directory if it doesn't exist
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
temp_path = os.path.join(app.config['UPLOAD_FOLDER'], current_upload['filename'])
# Combine chunks and save file
with open(temp_path, 'wb') as f:
for chunk in current_upload['chunks']:
f.write(chunk)
# Process the PDF
doc_splits = load_doc([temp_path])
vector_db = create_db(doc_splits)
# Cleanup
os.remove(temp_path)
current_upload['chunks'] = []
current_upload['filename'] = None
return jsonify({'message': 'PDF processed successfully'}), 200
except Exception as e:
if os.path.exists(temp_path):
os.remove(temp_path)
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(debug=True)
|