Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -66,37 +66,40 @@ def create_db(splits):
|
|
66 |
vectordb = FAISS.from_documents(splits, embeddings)
|
67 |
return vectordb
|
68 |
|
69 |
-
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db,
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
memory = ConversationBufferMemory(
|
82 |
memory_key="chat_history",
|
83 |
output_key='answer',
|
84 |
return_messages=True
|
85 |
)
|
86 |
|
87 |
-
|
88 |
-
retriever = vector_db.as_retriever()
|
89 |
-
|
90 |
-
# Initialize ConversationalRetrievalChain using LLM and the retriever
|
91 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
92 |
llm,
|
93 |
retriever=retriever,
|
94 |
-
chain_type="stuff",
|
95 |
memory=memory,
|
96 |
return_source_documents=True,
|
97 |
verbose=False,
|
98 |
)
|
99 |
-
return qa_chain
|
100 |
|
101 |
|
102 |
def format_chat_history(message, chat_history):
|
|
|
66 |
vectordb = FAISS.from_documents(splits, embeddings)
|
67 |
return vectordb
|
68 |
|
69 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
70 |
+
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
|
71 |
+
llm = HuggingFaceEndpoint(
|
72 |
+
repo_id=llm_model,
|
73 |
+
huggingfacehub_api_token = api_token,
|
74 |
+
temperature = temperature,
|
75 |
+
max_new_tokens = max_tokens,
|
76 |
+
top_k = top_k,
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
llm = HuggingFaceEndpoint(
|
80 |
+
huggingfacehub_api_token = api_token,
|
81 |
+
repo_id=llm_model,
|
82 |
+
temperature = temperature,
|
83 |
+
max_new_tokens = max_tokens,
|
84 |
+
top_k = top_k,
|
85 |
+
)
|
86 |
+
|
87 |
memory = ConversationBufferMemory(
|
88 |
memory_key="chat_history",
|
89 |
output_key='answer',
|
90 |
return_messages=True
|
91 |
)
|
92 |
|
93 |
+
retriever=vector_db.as_retriever()
|
|
|
|
|
|
|
94 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
95 |
llm,
|
96 |
retriever=retriever,
|
97 |
+
chain_type="stuff",
|
98 |
memory=memory,
|
99 |
return_source_documents=True,
|
100 |
verbose=False,
|
101 |
)
|
102 |
+
return qa_chain
|
103 |
|
104 |
|
105 |
def format_chat_history(message, chat_history):
|