Spaces:
Running
Running
from fastapi import FastAPI, File, UploadFile, Response | |
from fastapi.responses import FileResponse | |
from tensorflow.keras.preprocessing.image import img_to_array | |
import tensorflow as tf | |
import cv2 | |
import numpy as np | |
import os | |
from scipy import fftpack | |
from scipy import ndimage | |
from ultralytics import YOLO | |
from PIL import Image | |
import io | |
import threading | |
live_view_running = False | |
app = FastAPI() | |
uploads_dir = 'uploads' | |
if not os.path.exists(uploads_dir): | |
os.makedirs(uploads_dir) | |
# Load the saved models | |
segmentation_model_path = 'segmentation_model.h5' | |
segmentation_model = tf.keras.models.load_model(segmentation_model_path) | |
yolo_model_path = 'best.pt' | |
yolo_model = YOLO(yolo_model_path) | |
def calculate_moisture_and_texture(image): | |
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
fft_image = fftpack.fft2(gray_image) | |
fft_shifted = fftpack.fftshift(fft_image) | |
magnitude_spectrum = 20 * np.log(np.abs(fft_shifted)) | |
height, width = magnitude_spectrum.shape | |
center_x, center_y = width // 2, height // 2 | |
radius = min(center_x, center_y) // 2 | |
moisture_region = magnitude_spectrum[center_y - radius:center_y + radius, center_x - radius:center_x + radius] | |
moisture_level = np.mean(moisture_region) | |
return moisture_level | |
def calculate_wound_dimensions(mask): | |
labeled_mask, num_labels = ndimage.label(mask > 0.5) | |
label_count = np.bincount(labeled_mask.ravel()) | |
wound_label = np.argmax(label_count[1:]) + 1 | |
wound_region = labeled_mask == wound_label | |
rows = np.any(wound_region, axis=1) | |
cols = np.any(wound_region, axis=0) | |
rmin, rmax = np.where(rows)[0][[0, -1]] | |
cmin, cmax = np.where(cols)[0][[0, -1]] | |
length_pixels = rmax - rmin | |
breadth_pixels = cmax - cmin | |
pixel_to_cm_ratio = 0.1 | |
length_cm = length_pixels * pixel_to_cm_ratio | |
breadth_cm = breadth_pixels * pixel_to_cm_ratio | |
depth_cm = np.mean(mask[wound_region]) * pixel_to_cm_ratio | |
length_cm = round(length_cm, 3) | |
breadth_cm = round(breadth_cm, 3) | |
depth_cm = round(depth_cm, 3) | |
area_cm2 = length_cm * breadth_cm | |
return length_cm, breadth_cm, depth_cm, area_cm2 | |
# Draw YOLO detection landmarks (bounding boxes) on the image | |
def draw_square_landmarks(frame): | |
results = yolo_model(frame)[0] | |
for box in results.boxes.xyxy.tolist(): | |
x1, y1, x2, y2 = map(int, box) | |
w = x2 - x1 | |
h = y2 - y1 | |
side = max(w, h) | |
cx = x1 + w // 2 | |
cy = y1 + h // 2 | |
new_x1 = max(cx - side // 2, 0) | |
new_y1 = max(cy - side // 2, 0) | |
new_x2 = new_x1 + side | |
new_y2 = new_y1 + side | |
cv2.rectangle(frame, (new_x1, new_y1), (new_x2, new_y2), (0, 255, 0), 2) | |
return frame | |
async def analyze_wounds(file: UploadFile = File(...)): | |
if file.filename.lower().endswith(('.png', '.jpg', '.jpeg')): | |
contents = await file.read() | |
nparr = np.frombuffer(contents, np.uint8) # safer than np.fromstring | |
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) | |
results = yolo_model(img) | |
img = draw_square_landmarks(img) # ✅ Add landmarks to the original image | |
combined_xmin = float('inf') | |
combined_ymin = float('inf') | |
combined_xmax = float('-inf') | |
combined_ymax = float('-inf') | |
for detection in results[0].boxes.xyxy.tolist(): | |
xmin, ymin, xmax, ymax = detection | |
combined_xmin = min(combined_xmin, xmin) | |
combined_ymin = min(combined_ymin, ymin) | |
combined_xmax = max(combined_xmax, xmax) | |
combined_ymax = max(combined_ymax, ymax) | |
combined_xmin = int(combined_xmin) | |
combined_ymin = int(combined_ymin) | |
combined_xmax = int(combined_xmax) | |
combined_ymax = int(combined_ymax) | |
combined_img = img[combined_ymin:combined_ymax, combined_xmin:combined_xmax] | |
combined_img_resized = cv2.resize(combined_img, (224, 224)) | |
img_array = img_to_array(combined_img_resized) / 255.0 | |
img_array = np.expand_dims(img_array, axis=0) | |
output = segmentation_model.predict(img_array) | |
predicted_mask = output[0] | |
mask_overlay = (predicted_mask.squeeze() * 255).astype(np.uint8) | |
mask_overlay_colored = np.zeros((mask_overlay.shape[0], mask_overlay.shape[1], 3), dtype=np.uint8) | |
mask_overlay_colored[mask_overlay > 200] = [255, 0, 0] # Red | |
mask_overlay_colored[(mask_overlay > 100) & (mask_overlay <= 200)] = [0, 255, 0] # Green | |
mask_overlay_colored[mask_overlay <= 100] = [0, 0, 255] # Blue | |
mask_overlay_colored = cv2.resize(mask_overlay_colored, (224, 224)) | |
blended_image = cv2.addWeighted(combined_img_resized.astype(np.uint8), 0.6, mask_overlay_colored, 0.4, 0) | |
segmented_image = Image.fromarray(cv2.cvtColor(blended_image, cv2.COLOR_BGR2RGB)) | |
img_byte_arr = io.BytesIO() | |
segmented_image.save(img_byte_arr, format='PNG') | |
img_byte_arr.seek(0) | |
length_cm, breadth_cm, depth_cm, area_cm2 = calculate_wound_dimensions(predicted_mask) | |
moisture = calculate_moisture_and_texture(combined_img) | |
response = Response(img_byte_arr.getvalue(), media_type='image/png') | |
response.headers['X-Length-Cm'] = str(length_cm) | |
response.headers['X-Breadth-Cm'] = str(breadth_cm) | |
response.headers['X-Depth-Cm'] = str(depth_cm) | |
response.headers['X-Area-Cm2'] = str(area_cm2) | |
response.headers['X-Moisture'] = str(moisture) | |
return response | |
return {'error': 'Invalid file format'} | |
def start_camera(): | |
global live_view_running | |
cap = cv2.VideoCapture(0) | |
live_view_running = True | |
while live_view_running: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame = draw_square_landmarks(frame) | |
cv2.imshow('Live Landmarks - Press Q to stop', frame) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
live_view_running = False | |
break | |
cap.release() | |
cv2.destroyAllWindows() | |
def live_camera_with_landmarks(): | |
if not live_view_running: | |
threading.Thread(target=start_camera).start() | |
return {"message": "Live camera started. Check your system's display window."} | |
else: | |
return {"message": "Live camera already running."} | |