File size: 3,645 Bytes
307197c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import aiohttp
import io
import random
import panel as pn

from PIL import Image

from transformers import CLIPProcessor, CLIPModel
from typing import List, Tuple

pn.extension(design='bootstrap', sizing_mode="stretch_width")

async def random_url(_):
    api_url = random.choice([
        "https://api.thecatapi.com/v1/images/search",
        "https://api.thedogapi.com/v1/images/search"
    ])
    async with aiohttp.ClientSession() as session:
        async with session.get(api_url) as resp:
            return (await resp.json())[0]["url"]

@pn.cache
def load_processor_model(
    processor_name: str, model_name: str
) -> Tuple[CLIPProcessor, CLIPModel]:
    processor = CLIPProcessor.from_pretrained(processor_name)
    model = CLIPModel.from_pretrained(model_name)
    return processor, model


async def open_image_url(image_url: str) -> Image:
    async with aiohttp.ClientSession() as session:
        async with session.get(image_url) as resp:
            return Image.open(io.BytesIO(await resp.read()))


def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
    processor, model = load_processor_model(
        "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
    )
    inputs = processor(
        text=class_items,
        images=[image],
        return_tensors="pt",  # pytorch tensors
    )
    outputs = model(**inputs)
    logits_per_image = outputs.logits_per_image
    class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
    return class_likelihoods[0]


async def process_inputs(class_names: List[str], image_url: str):
    """
    High level function that takes in the user inputs and returns the
    classification results as panel objects.
    """
    if not image_url:
        yield '## Provide an image URL' 
        return
    yield '## Fetching image and running model βš™'
    pil_img = await open_image_url(image_url)
    img = pn.pane.Image(pil_img, height=400, align='center')

    class_items = class_names.split(",")
    class_likelihoods = get_similarity_scores(class_items, pil_img)

    # build the results column
    results = pn.Column("## πŸŽ‰ Here are the results!", img)

    for class_item, class_likelihood in zip(class_items, class_likelihoods):
        row_label = pn.widgets.StaticText(
            name=class_item.strip(), value=f"{class_likelihood:.2%}", align='center'
        )
        row_bar = pn.indicators.Progress(
            value=int(class_likelihood * 100),
            sizing_mode="stretch_width",
            bar_color="secondary",
            margin=(0, 10),
            design=pn.theme.Material
        )
        results.append(pn.Column(row_label, row_bar))
    yield results

# create widgets
randomize_url = pn.widgets.Button(name="Randomize URL", align="end")

image_url = pn.widgets.TextInput(
    name="Image URL to classify",
    value=pn.bind(random_url, randomize_url),
)
class_names = pn.widgets.TextInput(
    name="Comma separated class names",
    placeholder="Enter possible class names, e.g. cat, dog",
    value="cat, dog, parrot",
)

input_widgets = pn.Column(
    "## 😊 Click randomize or paste a URL to start classifying!",
    pn.Row(image_url, randomize_url),
    class_names,
)

# add interactivity
interactive_result = pn.bind(
    process_inputs, image_url=image_url, class_names=class_names
)

# create dashboard
main = pn.WidgetBox(
    input_widgets,
    interactive_result,
)

pn.template.BootstrapTemplate(
    title="Panel Image Classification Demo",
    main=main,
    main_max_width="min(50%, 698px)",
    header_background="#F08080",
).servable(title="Panel Image Classification Demo");