Spaces:
Runtime error
Runtime error
copied all files
Browse files- .gitignore +4 -0
- Dockerfile +11 -0
- README.md +6 -5
- app.py +211 -0
- requirements.txt +9 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
__pycache__
|
3 |
+
.cache
|
4 |
+
.chainlit
|
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
RUN useradd -m -u 1000 user
|
3 |
+
USER user
|
4 |
+
ENV HOME=/home/user \
|
5 |
+
PATH=/home/user/.local/bin:$PATH
|
6 |
+
WORKDIR $HOME/app
|
7 |
+
COPY --chown=user . $HOME/app
|
8 |
+
COPY ./requirements.txt ~/app/requirements.txt
|
9 |
+
RUN pip install -r requirements.txt
|
10 |
+
COPY . .
|
11 |
+
CMD ["chainlit", "run", "app.py", "--port", "7860"]
|
README.md
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
-
license:
|
|
|
9 |
---
|
10 |
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Barbenheimer RAQA Application Chainlit Demo
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: red
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
+
license: apache-2.0
|
9 |
+
duplicated_from: ai-maker-space/Barbie-RAQA-Application-Chainlit-Demo
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import openai
|
3 |
+
import chainlit as cl
|
4 |
+
import pandas as pd
|
5 |
+
import chromadb
|
6 |
+
|
7 |
+
from chainlit import user_session
|
8 |
+
from sqlalchemy import create_engine
|
9 |
+
from typing import List, Tuple, Any
|
10 |
+
from pydantic import BaseModel, Field
|
11 |
+
from llama_index import Document
|
12 |
+
from llama_index import SQLDatabase
|
13 |
+
from llama_index.agent import OpenAIAgent
|
14 |
+
from llama_index.tools.query_engine import QueryEngineTool
|
15 |
+
from llama_index.indices.struct_store.sql_query import NLSQLTableQueryEngine
|
16 |
+
from llama_index import ServiceContext
|
17 |
+
from llama_index.llms import OpenAI
|
18 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
19 |
+
from llama_index import VectorStoreIndex
|
20 |
+
from llama_index.vector_stores import ChromaVectorStore
|
21 |
+
from llama_index.storage.storage_context import StorageContext
|
22 |
+
from llama_index.tools import FunctionTool
|
23 |
+
from llama_index.retrievers import VectorIndexRetriever
|
24 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
25 |
+
from llama_index.vector_stores.types import (
|
26 |
+
VectorStoreInfo,
|
27 |
+
MetadataInfo,
|
28 |
+
ExactMatchFilter,
|
29 |
+
MetadataFilters,
|
30 |
+
)
|
31 |
+
|
32 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
33 |
+
|
34 |
+
# preparation
|
35 |
+
def get_df_from_workbook(sheet_name,
|
36 |
+
workbook_id = '1MB1ZsQul4AB262AsaY4fHtGW4HWp2-56zB-E5xTbs2A'):
|
37 |
+
url = f'https://docs.google.com/spreadsheets/d/{workbook_id}/gviz/tq?tqx=out:csv&sheet={sheet_name}'
|
38 |
+
return pd.read_csv(url)
|
39 |
+
|
40 |
+
docEmailSample = Document(
|
41 |
+
text="Hey KD, let's grab dinner after our next game, Steph",
|
42 |
+
metadata={'from_to': 'Stephen Curry to Kevin Durant',}
|
43 |
+
)
|
44 |
+
docEmailSample2 = Document(
|
45 |
+
text="Yo Joker, you were a monster last year, can't wait to play against you in the opener! Draymond",
|
46 |
+
metadata={'from_to': 'Draymond Green to Nikola Jokic',}
|
47 |
+
)
|
48 |
+
docAdditionalSamples = [docEmailSample, docEmailSample2]
|
49 |
+
|
50 |
+
class AutoRetrieveModel(BaseModel):
|
51 |
+
query: str = Field(..., description="natural language query string")
|
52 |
+
filter_key_list: List[str] = Field(
|
53 |
+
..., description="List of metadata filter field names"
|
54 |
+
)
|
55 |
+
filter_value_list: List[str] = Field(
|
56 |
+
...,
|
57 |
+
description=(
|
58 |
+
"List of metadata filter field values (corresponding to names specified in filter_key_list)"
|
59 |
+
)
|
60 |
+
)
|
61 |
+
|
62 |
+
def auto_retrieve_fn(
|
63 |
+
query: str, filter_key_list: List[str], filter_value_list: List[str]
|
64 |
+
):
|
65 |
+
"""Auto retrieval function.
|
66 |
+
|
67 |
+
Performs auto-retrieval from a vector database, and then applies a set of filters.
|
68 |
+
|
69 |
+
"""
|
70 |
+
query = query or "Query"
|
71 |
+
|
72 |
+
# for i, (k, v) in enumerate(zip(filter_key_list, filter_value_list)):
|
73 |
+
# if k == 'token_list':
|
74 |
+
# if token not in v:
|
75 |
+
# v = ''
|
76 |
+
|
77 |
+
exact_match_filters = [
|
78 |
+
ExactMatchFilter(key=k, value=v)
|
79 |
+
for k, v in zip(filter_key_list, filter_value_list)
|
80 |
+
]
|
81 |
+
retriever = VectorIndexRetriever(
|
82 |
+
vector_index, filters=MetadataFilters(filters=exact_match_filters), top_k=top_k
|
83 |
+
)
|
84 |
+
# query_engine = vector_index.as_query_engine(filters=MetadataFilters(filters=exact_match_filters))
|
85 |
+
query_engine = RetrieverQueryEngine.from_args(retriever)
|
86 |
+
|
87 |
+
response = query_engine.query(query)
|
88 |
+
return str(response)
|
89 |
+
|
90 |
+
# loading CSV data
|
91 |
+
sheet_names = ['Teams', 'Players', 'Schedule', 'Player_Stats']
|
92 |
+
dict_of_dfs = {sheet: get_df_from_workbook(sheet) for sheet in sheet_names}
|
93 |
+
|
94 |
+
engine = create_engine("sqlite+pysqlite:///:memory:")
|
95 |
+
|
96 |
+
for df in dict_of_dfs:
|
97 |
+
dict_of_dfs[df].to_sql(df, con=engine)
|
98 |
+
|
99 |
+
sql_database = SQLDatabase(
|
100 |
+
engine,
|
101 |
+
include_tables=list(dict_of_dfs.keys())
|
102 |
+
)
|
103 |
+
|
104 |
+
# setting up llm & service content
|
105 |
+
embed_model = OpenAIEmbedding()
|
106 |
+
chunk_size = 1000
|
107 |
+
llm = OpenAI(
|
108 |
+
temperature=0,
|
109 |
+
model="gpt-3.5-turbo",
|
110 |
+
streaming=True
|
111 |
+
)
|
112 |
+
service_context = ServiceContext.from_defaults(
|
113 |
+
llm=llm,
|
114 |
+
chunk_size=chunk_size,
|
115 |
+
embed_model=embed_model
|
116 |
+
)
|
117 |
+
|
118 |
+
# setting up vector store
|
119 |
+
chroma_client = chromadb.Client()
|
120 |
+
chroma_collection = chroma_client.create_collection("all_data")
|
121 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
122 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
123 |
+
vector_index = VectorStoreIndex([], storage_context=storage_context, service_context=service_context)
|
124 |
+
|
125 |
+
vector_index.insert_nodes(docAdditionalSamples)
|
126 |
+
|
127 |
+
# setting up metadata
|
128 |
+
top_k = 3
|
129 |
+
info_emails_players = VectorStoreInfo(
|
130 |
+
content_info="emails exchanged between NBA players",
|
131 |
+
metadata_info=[
|
132 |
+
MetadataInfo(
|
133 |
+
name="from_to",
|
134 |
+
type="str",
|
135 |
+
description="""
|
136 |
+
email sent by a player of the Golden State Warriors to any other NBA player, one of [
|
137 |
+
Stephen Curry to any NBA player,
|
138 |
+
Klay Thompson to any NBA player,
|
139 |
+
Chris Paul to any NBA player,
|
140 |
+
Andrew Wiggins to any NBA player,
|
141 |
+
Draymond Green to any NBA player,
|
142 |
+
Gary Payton II to any NBA player,
|
143 |
+
Kevon Looney to any NBA player,
|
144 |
+
Jonathan Kuminga to any NBA player,
|
145 |
+
Moses Moody to any NBA player,
|
146 |
+
Brandin Podziemski to any NBA player,
|
147 |
+
Cory Joseph to any NBA player,
|
148 |
+
Dario Šarić to any NBA player]"""
|
149 |
+
),
|
150 |
+
]
|
151 |
+
)
|
152 |
+
|
153 |
+
@cl.on_chat_start
|
154 |
+
def main():
|
155 |
+
|
156 |
+
sql_query_engine = NLSQLTableQueryEngine(
|
157 |
+
sql_database=sql_database,
|
158 |
+
tables=list(dict_of_dfs.keys())
|
159 |
+
)
|
160 |
+
|
161 |
+
sql_nba_tool = QueryEngineTool.from_defaults(
|
162 |
+
query_engine=sql_query_engine, #
|
163 |
+
name='sql_nba_tool',
|
164 |
+
description=("""Useful for translating a natural language query into a SQL query over tables containing:
|
165 |
+
1. teams, containing information related to all NBA teams
|
166 |
+
2. players, containing information about the team that each player plays for
|
167 |
+
3. schedule, containing information related to the entire NBA game schedule
|
168 |
+
4. player_stats, containing information related to all NBA player stats
|
169 |
+
"""
|
170 |
+
),
|
171 |
+
)
|
172 |
+
|
173 |
+
description_emails = f"""\
|
174 |
+
Use this tool to look up information about emails exchanged betweed players of the Golden State Warriors and any other NBA player.
|
175 |
+
The vector database schema is given below:
|
176 |
+
{info_emails_players.json()}
|
177 |
+
"""
|
178 |
+
auto_retrieve_tool_emails = FunctionTool.from_defaults(
|
179 |
+
fn=auto_retrieve_fn,
|
180 |
+
name='auto_retrieve_tool_emails',
|
181 |
+
description=description_emails,
|
182 |
+
fn_schema=AutoRetrieveModel
|
183 |
+
)
|
184 |
+
|
185 |
+
agent = OpenAIAgent.from_tools(
|
186 |
+
# agent = ReActAgent.from_tools(
|
187 |
+
tools = [sql_nba_tool,
|
188 |
+
auto_retrieve_tool_emails,
|
189 |
+
],
|
190 |
+
llm=llm,
|
191 |
+
verbose=True,
|
192 |
+
)
|
193 |
+
|
194 |
+
cl.user_session.set("agent", agent)
|
195 |
+
|
196 |
+
@cl.on_message
|
197 |
+
async def main(message):
|
198 |
+
agent = cl.user_session.get("agent")
|
199 |
+
|
200 |
+
# response = agent.chat(message.content)
|
201 |
+
response = agent.chat(message)
|
202 |
+
|
203 |
+
response_message = cl.Message(content="")
|
204 |
+
|
205 |
+
# for token in response.response:
|
206 |
+
# await response_message.stream_token(token=token)
|
207 |
+
|
208 |
+
if response.response:
|
209 |
+
response_message.content = response.response
|
210 |
+
|
211 |
+
await response_message.send()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai==0.27.8
|
2 |
+
llama-index==0.8.6
|
3 |
+
nltk==3.8.1
|
4 |
+
chromadb==0.4.6
|
5 |
+
tiktoken==0.4.0
|
6 |
+
sentence-transformers==2.2.2
|
7 |
+
pydantic==1.10.11
|
8 |
+
chainlit
|
9 |
+
pandas
|