MNIST / parimal.py
ParimalX's picture
first_app
f623e5f
raw
history blame
729 Bytes
import streamlit as st
import numpy as np
from PIL import Image
import cv2
import tensorflow as tf
st.title("Hello Parimal")
def data_preprocessing(img):
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img = np.resize(img, [1, 28, 28])
img = img/255
return img
image = st.file_uploader("Upload files", type=["jpeg", "png", "jpg", "webp"])
model = tf.keras.models.load_model("mnist.h5")
if image is not None:
img = Image.open(image)
img = np.array(img)
st.image(img, caption="Uploaded Image", use_column_width=True)
images = data_preprocessing(img)
predictions = model.predict(images)
predictions = np.argmax(predictions)
st.write(f"The Predicted Value: {predictions}")