Spaces:
Runtime error
Runtime error
File size: 1,414 Bytes
1ec3db3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from time import time
def random_forest_train():
# Importing the dataset
dataset = pd.read_csv('Breast Cancer Data.csv')
X = dataset.iloc[:, 2:32].values
y = dataset.iloc[:, 1].values
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
y = labelencoder_X_1.fit_transform(y)
# Splitting the dataset into the Training set and Test set
global X_test, y_test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
global sc
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
return clf
def randorm_forest_test(clf):
t = time()
output = clf.predict(X_test)
acc = accuracy_score(y_test, output)
print("The accuracy of testing data: ",acc)
print("The running time: ",time()-t)
def random_forest_predict(clf, inp):
t = time()
inp = sc.transform(inp)
output = clf.predict(inp)
acc = clf.predict_proba(inp)
print("The running time: ",time()-t)
return output, acc, time()-t; |