import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from time import time def random_forest_train(): # Importing the dataset dataset = pd.read_csv('Breast Cancer Data.csv') X = dataset.iloc[:, 2:32].values y = dataset.iloc[:, 1].values # Encoding categorical data from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X_1 = LabelEncoder() y = labelencoder_X_1.fit_transform(y) # Splitting the dataset into the Training set and Test set global X_test, y_test from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Feature Scaling from sklearn.preprocessing import StandardScaler global sc sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) clf = RandomForestClassifier(n_estimators=100) clf.fit(X_train, y_train) return clf def randorm_forest_test(clf): t = time() output = clf.predict(X_test) acc = accuracy_score(y_test, output) print("The accuracy of testing data: ",acc) print("The running time: ",time()-t) def random_forest_predict(clf, inp): t = time() inp = sc.transform(inp) output = clf.predict(inp) acc = clf.predict_proba(inp) print("The running time: ",time()-t) return output, acc, time()-t;