# Part 1 - Data Preprocessing # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Breast Cancer Data.csv') X = dataset.iloc[:, 2:32].values y = dataset.iloc[:, 1].values # Encoding categorical data from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X_1 = LabelEncoder() y = labelencoder_X_1.fit_transform(y) # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.metrics import accuracy_score from time import time t = time() clf = RandomForestClassifier() clf.fit(X_train, y_train) output = clf.predict(X_test) accuracy = accuracy_score(y_test, output) print("The accuracy of testing data: ",accuracy) print("The running time: ",time()-t)