Spaces:
Runtime error
Runtime error
ParisNeo
commited on
Commit
·
5a68348
1
Parent(s):
7ab4581
bugfix
Browse files
app.py
CHANGED
@@ -263,7 +263,6 @@ class UI():
|
|
263 |
embedding = DeepFace.represent(image, enforce_detection=False)[0]["embedding"]
|
264 |
self.embeddings_cloud.append(embedding)
|
265 |
self.i+=1
|
266 |
-
cv2.imshow('Face Mesh', cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
267 |
except Exception as ex:
|
268 |
print(ex)
|
269 |
return f"Processing frame {self.i}/{self.nb_images}..."
|
@@ -296,6 +295,7 @@ class UI():
|
|
296 |
|
297 |
if images is not None:
|
298 |
for entry in images:
|
|
|
299 |
image = cv2.cvtColor(cv2.imread(entry["name"]), cv2.COLOR_BGR2RGB)
|
300 |
if image is None:
|
301 |
return None
|
@@ -306,6 +306,7 @@ class UI():
|
|
306 |
# Process the image to extract faces and draw the masks on the face in the image
|
307 |
fa.process(image)
|
308 |
if fa.nb_faces>0:
|
|
|
309 |
try:
|
310 |
face = fa.faces[0]
|
311 |
vertices = face.get_face_outer_vertices()
|
@@ -313,7 +314,6 @@ class UI():
|
|
313 |
embedding = DeepFace.represent(image, enforce_detection=False)[0]["embedding"]
|
314 |
self.embeddings_cloud.append(embedding)
|
315 |
self.i+=1
|
316 |
-
cv2.imshow('Face Mesh', cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
317 |
except Exception as ex:
|
318 |
print(ex)
|
319 |
# Now let's find out where the face lives inside the latent space (128 dimensions space)
|
|
|
263 |
embedding = DeepFace.represent(image, enforce_detection=False)[0]["embedding"]
|
264 |
self.embeddings_cloud.append(embedding)
|
265 |
self.i+=1
|
|
|
266 |
except Exception as ex:
|
267 |
print(ex)
|
268 |
return f"Processing frame {self.i}/{self.nb_images}..."
|
|
|
295 |
|
296 |
if images is not None:
|
297 |
for entry in images:
|
298 |
+
print(f"Processing image {entry['name']}")
|
299 |
image = cv2.cvtColor(cv2.imread(entry["name"]), cv2.COLOR_BGR2RGB)
|
300 |
if image is None:
|
301 |
return None
|
|
|
306 |
# Process the image to extract faces and draw the masks on the face in the image
|
307 |
fa.process(image)
|
308 |
if fa.nb_faces>0:
|
309 |
+
print(f"Found {fa.nb_faces} faces")
|
310 |
try:
|
311 |
face = fa.faces[0]
|
312 |
vertices = face.get_face_outer_vertices()
|
|
|
314 |
embedding = DeepFace.represent(image, enforce_detection=False)[0]["embedding"]
|
315 |
self.embeddings_cloud.append(embedding)
|
316 |
self.i+=1
|
|
|
317 |
except Exception as ex:
|
318 |
print(ex)
|
319 |
# Now let's find out where the face lives inside the latent space (128 dimensions space)
|