tabedini commited on
Commit
e9f296d
·
verified ·
1 Parent(s): 22b8af9

Update app.py

Browse files

Add initial app.py code

Files changed (1) hide show
  1. app.py +180 -40
app.py CHANGED
@@ -1,63 +1,203 @@
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
3
 
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
 
 
 
 
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
38
 
39
- response += token
40
- yield response
 
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
  gr.Slider(
52
- minimum=0.1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  maximum=1.0,
54
- value=0.95,
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  step=0.05,
56
- label="Top-p (nucleus sampling)",
57
  ),
 
 
 
 
58
  ],
 
 
 
 
 
 
 
 
59
  )
60
 
61
 
 
 
 
 
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
 
 
 
1
+ import os
2
+ from threading import Thread
3
+ from typing import Iterator
4
+
5
  import gradio as gr
6
+ import spaces
7
+ import torch
8
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
9
+ import time
10
+
11
+ MAX_MAX_NEW_TOKENS = 2048
12
+ DEFAULT_MAX_NEW_TOKENS = 1024
13
+ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
14
+
15
 
16
+ DESCRIPTION = """\
17
+ # Dorna-Llama3-8B-Instruct Chat
18
  """
19
+
20
+ PLACEHOLDER = """
21
+ <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
22
+ <img src="https://avatars.githubusercontent.com/u/39557177?v=4" style="width: 80%; max-width: 550px; height: auto; opacity: 0.80; ">
23
+ <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Dorna-Llama3-8B-Instruct</h1>
24
+ </div>
25
  """
 
26
 
27
+ custom_css = """
28
+ @import url('https://fonts.googleapis.com/css2?family=Vazirmatn&display=swap');
29
 
30
+ body, .gradio-container, .gr-button, .gr-input, .gr-slider, .gr-dropdown, .gr-markdown {
31
+ font-family: 'Vazirmatn', sans-serif !important;
32
+ }
 
 
 
 
 
 
33
 
34
+ ._button {
35
+ font-size: 20px;
36
+ }
 
 
37
 
38
+ pre, code {
39
+ direction: ltr !important;
40
+ unicode-bidi: plaintext !important;
41
+ }
42
+ """
43
 
 
44
 
45
+ system_prompt = str(os.getenv("SYSTEM_PROMPT"))
46
+
47
+
48
+ def execution_time_calculator(start_time, log=True):
49
+ delta = time.time() - start_time
50
+ if log:
51
+ print("--- %s seconds ---" % (delta))
52
+ return delta
53
+
54
+ def token_per_second_calculator(tokens_count, time_delta):
55
+ return tokens_count/time_delta
56
+
57
+ if not torch.cuda.is_available():
58
+ DESCRIPTION = "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
59
+
60
+
61
+ if torch.cuda.is_available():
62
+ model_id = "PartAI/Dorna-Llama3-8B-Instruct"
63
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
64
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
65
+
66
+ generation_speed = 0
67
+
68
+ def get_generation_speed():
69
+ global generation_speed
70
+
71
+ return generation_speed
72
+
73
+
74
+ @spaces.GPU
75
+ def generate(
76
+ message: str,
77
+ chat_history: list[tuple[str, str]],
78
+ max_new_tokens: int = 1024,
79
+ temperature: float = 0.6,
80
+ top_p: float = 0.9,
81
+ top_k: int = 50,
82
+ repetition_penalty: float = 1.2,
83
+ do_sample: bool =True,
84
+ ) -> Iterator[str]:
85
+ global generation_speed
86
+ global system_prompt
87
+
88
+ conversation = []
89
+ if system_prompt:
90
+ conversation.append({"role": "system", "content": system_prompt})
91
+ for user, assistant in chat_history:
92
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
93
+ conversation.append({"role": "user", "content": message})
94
+
95
+ input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
96
+ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
97
+ input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
98
+ gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
99
+ input_ids = input_ids.to(model.device)
100
+
101
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
102
+ generate_kwargs = dict(
103
+ {"input_ids": input_ids},
104
+ streamer=streamer,
105
+ max_new_tokens=max_new_tokens,
106
+ do_sample=do_sample,
107
  top_p=top_p,
108
+ top_k=top_k,
109
+ temperature=temperature,
110
+ num_beams=1,
111
+ repetition_penalty=repetition_penalty,
112
+ )
113
 
114
+ start_time = time.time()
115
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
116
+ t.start()
117
 
118
+ outputs = []
119
+ sum_tokens = 0
120
+ for text in streamer:
121
+ num_tokens = len(tokenizer.tokenize(text))
122
+ sum_tokens += num_tokens
123
+
124
+ outputs.append(text)
125
+ yield "".join(outputs)
126
+
127
+ time_delta = execution_time_calculator(start_time, log=False)
128
+
129
+ generation_speed = token_per_second_calculator(sum_tokens, time_delta)
130
+
131
+ print(f"generation_speed: {generation_speed}")
132
+
133
+
134
+ chatbot = gr.Chatbot(placeholder=PLACEHOLDER, scale=1, show_copy_button=True, height="68%", rtl=True) #, elem_classes=["chatbot"])
135
+ chat_input = gr.Textbox(show_label=False, lines=2, rtl=True, placeholder="ورودی", show_copy_button=True, scale=4)
136
+ submit_btn = gr.Button(variant="primary", value="ارسال", size="sm", scale=1, elem_classes=["_button"])
137
+
138
+
139
+ chat_interface = gr.ChatInterface(
140
+ fn=generate,
141
+ additional_inputs_accordion=gr.Accordion(label="ورودی‌های اضافی", open=False),
142
  additional_inputs=[
 
 
 
143
  gr.Slider(
144
+ label="حداکثر تعداد توکن ها",
145
+ minimum=1,
146
+ maximum=MAX_MAX_NEW_TOKENS,
147
+ step=1,
148
+ value=DEFAULT_MAX_NEW_TOKENS,
149
+ ),
150
+ gr.Slider(
151
+ label="Temperature",
152
+ minimum=0.01,
153
+ maximum=4.0,
154
+ step=0.01,
155
+ value=0.6,
156
+ ),
157
+ gr.Slider(
158
+ label="Top-p",
159
+ minimum=0.05,
160
  maximum=1.0,
161
+ step=0.01,
162
+ value=0.65,
163
+ ),
164
+ gr.Slider(
165
+ label="Top-k",
166
+ minimum=1,
167
+ maximum=1000,
168
+ step=1,
169
+ value=40,
170
+ ),
171
+ gr.Slider(
172
+ label="جریمه تکرار",
173
+ minimum=1.0,
174
+ maximum=2.0,
175
  step=0.05,
176
+ value=1.2,
177
  ),
178
+ gr.Dropdown(
179
+ label="نمونه‌گیری",
180
+ choices=[False, True],
181
+ value=True)
182
  ],
183
+ stop_btn="توقف",
184
+ chatbot=chatbot,
185
+ textbox=chat_input,
186
+ submit_btn=submit_btn,
187
+ retry_btn="🔄 تلاش مجدد",
188
+ undo_btn="↩️ بازگشت",
189
+ clear_btn="🗑️ پاک کردن",
190
+ title="درنا، محصول مرکز تحقیقات هوش مصنوعی پارت"
191
  )
192
 
193
 
194
+ with gr.Blocks(css=custom_css, fill_height=False) as demo:
195
+ gr.Markdown(DESCRIPTION)
196
+ chat_interface.render()
197
+
198
+
199
  if __name__ == "__main__":
200
+ demo.queue(max_size=20).launch()
201
+
202
+
203
+