Spaces:
Sleeping
Sleeping
File size: 24,282 Bytes
07c0591 03e8a43 07c0591 03e8a43 07c0591 03e8a43 07c0591 03e8a43 b976a31 03e8a43 07c0591 03e8a43 b976a31 07c0591 dc818ff 07c0591 03e8a43 07c0591 03e8a43 07c0591 03e8a43 07c0591 b976a31 07c0591 b976a31 07c0591 b976a31 03e8a43 07c0591 b976a31 07c0591 b976a31 07c0591 b976a31 07c0591 b976a31 07c0591 b976a31 07c0591 b976a31 07c0591 b976a31 07c0591 b976a31 07c0591 b976a31 07c0591 b976a31 07c0591 b976a31 07c0591 98df545 07c0591 b976a31 07c0591 b976a31 03e8a43 b976a31 07c0591 98df545 07c0591 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
from flask import Flask, jsonify, request
from flask_cors import CORS
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
from bson.objectid import ObjectId
import google.generativeai as genai
import urllib.parse
from models import UserSchema
from flask_bcrypt import Bcrypt
from flask_jwt_extended import JWTManager, create_access_token
from middleware.authUser import auth_user
from datetime import timedelta
from controllers.demo import get_initial_data
from controllers.mindmap import saveMindmap, getMindmap, deleteMindmap, getMindmapByid
import json
from dotenv import load_dotenv
import os
load_dotenv()
app = Flask(__name__)
bcrypt = Bcrypt(app)
jwt = JWTManager(app)
CORS(app)
app.config['JWT_SECRET_KEY'] = os.getenv('JWT_SECRET')
# MongoDB configuration
username = urllib.parse.quote_plus(os.getenv('MONGO_USERNAME'))
password = urllib.parse.quote_plus(os.getenv('MONGO_PASSWORD'))
restUri = os.getenv('REST_URI')
uri = f'mongodb+srv://{username}:{password}{restUri}'
client = MongoClient(uri, server_api=ServerApi('1'))
db = client.GenUpNexus
users_collection = db["users"]
interviews_collection = db["interviews"]
savedMindmap = db["savedMindmap"]
# Send a ping to confirm a successful connection
try:
client.admin.command('ping')
print("Pinged your deployment. You successfully connected to MongoDB!")
except Exception as e:
print(e)
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel('gemini-pro')
# Caches to reduce no of queries to MongoDB...
user_id_ping = {'current': 0}
user_chats = {}
@app.route('/')
def index():
return "Server is Running..."
@app.route('/index')
def index2():
return "routes checking..."
@app.route('/tree', methods=["POST", "GET"])
def tree():
if request.method == 'POST':
data = request.get_json()
query = data.get('query')
print(query)
response = model.generate_content('''I will give you a topic and you have to generate an explanation of the topic in points in hierarchical tree structure and respond with JSON structure as follows:
{
"name": "Java",
"children": [
{
"name": "Development Environment",
"children": [
{
"name": "Java Source Code",
"value": ".java files",
"description": "Human-readable code written with Java syntax."
},
{
"name": "Java Development Kit (JDK)",
"children": [
{
"name": "Compiler",
"value": "translates to bytecode",
"description": "Transforms Java source code into bytecode instructions understood by the JVM."
},
{
"name": "Java Class Library (JCL)",
"value": "predefined classes and functions",
"description": "Provides a collection of reusable code for common functionalities."
}
]
}
]
},
{
"name": "Execution",
"children": [
{
"name": "Java Runtime Environment (JRE)",
"children": [
{
"name": "Java Virtual Machine (JVM)",
"value": "executes bytecode",
"description": "Software program that interprets and executes bytecode instructions."
},
{
"name": "Class Loader",
"value": "loads bytecode into memory",
"description": "Loads .class files containing bytecode into JVM memory for execution."
}
]
},
{
"name": "Bytecode",
"value": ".class files (platform-independent)",
"description": "Machine-independent instructions generated by the compiler, executable on any system with JVM."
},
{
"name": "Just-In-Time (JIT) Compilation (optional)",
"value": "improves performance by translating bytecode to machine code",
"description": "Technique that translates frequently used bytecode sections into native machine code for faster execution."
}
]
},
{
"name": "Key Features",
"children": [
{
"name": "Object-Oriented Programming",
"value": "uses objects and classes",
"description": "Programs are structured around objects that encapsulate data and behavior."
},
{
"name": "Platform Independent (write once, run anywhere)",
"value": "bytecode runs on any system with JVM",
"description": "Java code can be compiled once and run on any platform with a JVM installed."
},
{
"name": "Garbage Collection",
"value": "automatic memory management",
"description": "JVM automatically reclaims memory from unused objects, simplifying memory management for developers."
}
]
}
]
}
Topic is: ''' + query)
# print(response.text)
return jsonify({'success': True, 'data': response.text})
# return temp
@app.route('/tree/demo', methods=["POST"])
def treeDemo():
if request.method == 'POST':
data = request.get_json()
query = data.get('query')
print(query)
response = model.generate_content('''Generate a comprehensive knowledge map representing the user's query, suitable for ReactFlow visualization.
**Prompt:** {query}
**Structure:**
- Top-level node: Represent the user's query.
- Sub-nodes branching out based on the query's relevance:
- Leverage external knowledge sources (e.g., Wikipedia, knowledge graphs, domain-specific APIs) to identify relevant sub-concepts, related entities, and potential relationships.
- Consider including different categories of sub-nodes:
- **Concepts:** Core ideas or principles related to the query.
- **Subfields:** Specialized areas within the main topic.
- **Applications:** Practical uses of the concept or subfield.
- **Tools and Technologies:** Software or platforms used to implement the concepts.
- **Examples:** Illustrative instances or use cases.
- **Historical Context:** Milestones or key figures in the topic's development.
- **See Also:** Links to broader concepts or related areas for the further exploration.
**Content:**
- Each node should have a label describing the concept, entity, or tool.
- Optionally, include brief descriptions, definitions, or key points within the nodes or as tooltips.
- Consider using icons to visually represent different categories of nodes (e.g., light bulb for concepts, gear for tools, calendar for historical context, puzzle piece for subfields).
- there should be atmax 10 nodes in the knowledge map.
- Also follow the n-ary tree structure for better visualization.
- Ensure the knowledge map is visually appealing, well-organized, and easy to navigate.
**Desired Format:**
- JSON structure compatible with ReactFlow:
- nodes (list): id, position, data (label, description, icon(if required), category), type(input, output or custom), style (background, color).
- edges (list): id, source, target, label(if required), animated (true or false), style (stroke).
- keep the position of nodes spaced out for better visualization.
- always keep the top-level node at the center of the visualization.
- keep atleast 2 edges "animated":true.
- Strictly keep the first node with style having color property with value blue and background property with value #0FFFF0.
- Strictly keep the second node with type property value as custom.
- You can style the nodes with different colors and edges with different colors.
- to edit edges add style with stroke property and a hexcode value to it.
Topic is: ''' + query)
# response.text(8,)
print(response.text)
json_data = response.text
modified_json_data = json_data[8:-3]
return jsonify({'success': True, 'data': modified_json_data})
# return temp
def res(user_id):
avg_text = 0
avg_code = 0
count = 0
for i, ele in enumerate(user_chats[user_id]['chat'].history):
if i == 0:
continue
if ele.role == 'model':
temp = json.loads(ele.parts[0].text)
print(temp)
if 'question' in temp.keys():
continue
elif 'next_question' in temp.keys() or 'end' in temp.keys():
count += 1
avg_text += temp['text_correctness']
if temp['code_correctness']:
avg_code += temp['code_correctness']
print(json.loads(ele.parts[0].text), end='\n\n')
avg_text /= count
avg_code /= count
user_chats[user_id]['test_results'] = {'avg_text': avg_text, 'avg_code': avg_code}
return True
@app.route('/interview', methods=["POST", "GET"])
def interview():
if request.method == 'POST':
data = request.get_json()
print(data)
if data.get('from') == 'client':
user_id = data.get('user_id')
request_type = data.get('type')
if request_type == 1: # Initialize Questionarrie.
chat = model.start_chat(history=[])
user_chats[user_id] = {}
user_chats[user_id]['chat'] = chat
user_chats[user_id]['processed'] = False
position = data.get('position')
round = data.get('round')
difficulty_level = data.get('difficulty_level')
company_name = data.get('company_name')
user_chats[user_id]['position'] = position
user_chats[user_id]['round'] = round
user_chats[user_id]['difficulty_level'] = difficulty_level
user_chats[user_id]['company_name'] = company_name
response = chat.send_message('''You are a Interviewer. I am providing you with the the position for which the inerview is, Round type, difficulty level of the interview to be conducted, Company name.
You need to generate atmost 2 interview questions one after another.
The questions may consists of writing a small code along with text as well.
Now generate first question in following JSON format:
{
"question": "What is ...?"
}
I will respond to the question in the following JSON format:
{
"text_answer": "answer ...",
"code": "if any...."
}
Now after evaluating the answers you need to respond in the following JSON format:
{
"next_question": "What is ...?",
"text_correctness": "Test the correctness of text and return a range from 1 to 5 of correctness of text.",
"text_suggestions": "Some suggestions regarding the text_answer.... in string format."
"code_correctness": "Test the correctness of code and return a range from 1 to 5 of correctness of code",
"code_suggestions": "Any suggestions or optimizations to the code...in string format.",
}
At the end of the interview if no Questions are required then respond in the following format:
{
"text_correctness": "Test the correctness of text and return a range from 1 to 5 of correctness of text.",
"text_suggestions": "Some suggestions regarding the text_answer...."
"code_correctness": "Test the correctness of code and return a range from 1 to 5 of correctness of code",
"code_suggestions": "Any suggestions or optimizations to the code...",
"end": "No more Questions thanks for your time."
}
Here are the details:
Position : '''+ position + '''
Round: '''+ round + '''
Difficullty Level : '''+ difficulty_level + '''
Company Interview : ''' + company_name)
print(response.text)
temp = json.loads(response.text)
user_chats[user_id]['qa'] = [{'question': temp['question']}]
return jsonify({'success': True, 'data': response.text})
if request_type == 2:
text_data = data.get('text_data')
code = data.get('code')
chat = user_chats[user_id]['chat']
response = chat.send_message('''{"text_answer": "''' + text_data + '''", "code": "''' + code + '''"}''')
print(response.text)
json_text = json.loads(response.text)
for i, ele in enumerate(user_chats[user_id]['qa']):
if i == len(user_chats[user_id]['qa'])-1:
ele['text_answer'] = text_data
ele['code_answer'] = code
ele['text_correctness'] = json_text['text_correctness']
ele['text_suggestions'] = json_text['text_suggestions']
ele['code_correctness'] = json_text['code_correctness']
ele['code_suggestions'] = json_text['code_suggestions']
try:
if json_text['end']:
user_id_ping['current'] = user_id
if res(user_id):
print(user_chats[user_id])
return jsonify({'success': True, 'data': response.text, 'end': True})
except Exception as e:
print(e)
user_chats[user_id]['qa'].append({'question': json_text['next_question']})
return jsonify({'success': True, 'data': response.text, 'end': False})
elif data.get('from') == 'gradio':
print(data)
user_id = data.get('user_id')
user_chats[user_id]['processed'] = True
user_chats[user_id]['gradio_results'] = {'total_video_emotions': data.get('total_video_emotions'), 'emotions_final': data.get('emotions_final'), 'body_language': data.get('body_language'), 'distraction_rate': data.get('distraction_rate'), 'formatted_response': data.get('formatted_response'), 'total_transcript_sentiment': data.get('total_transcript_sentiment')}
emotion_weights = {
'admiration': 0.8,
'amusement': 0.7,
'angry': -0.8,
'annoyance': -0.7,
'approval': 0.9,
'calm': 0.8,
'caring': 0.8,
'confusion': -0.5,
'curiosity': 0.6,
'desire': 0.7,
'disappointment': -0.8,
'disapproval': -0.9,
'disgust': -0.9,
'embarrassment': -0.7,
'excitement': 0.8,
'fear': -0.8,
'fearful': -0.8,
'gratitude': 0.9,
'grief': -0.9,
'happy': 0.9,
'love': 0.9,
'nervousness': -0.6,
'optimism': 0.8,
'pride': 0.9,
'realization': 0.7,
'relief': 0.8,
'remorse': -0.8,
'sad': -0.9,
'surprise': 0.7,
'surprised': 0.7,
'neutral': 0.0
}
temp = data.get('total_video_emotions')
temp2 = data.get('emotions_final')
temp3 = data.get('formatted_response')
temp4 = data.get('total_transcript_sentiment')
total_video_emotion_score = sum(temp[emotion] * emotion_weights[emotion] for emotion in temp)
total_video_emotion_normalized_score = ((total_video_emotion_score + 1) / 2) * 9 + 1
emotion_final_score = sum(temp2[emotion] * emotion_weights[emotion] for emotion in temp2)
emotion_final_normalized_score = ((emotion_final_score + 1) / 2) * 9 + 1
speech_sentiment_score = sum(temp3[emotion] * emotion_weights[emotion] for emotion in temp3)
speech_sentiment_normalized_score = ((speech_sentiment_score + 1) / 2) * 9 + 1
total_transcript_sentiment_score = sum(temp4[emotion] * emotion_weights[emotion] for emotion in temp4)
total_transcript_sentiment_normalized_score = ((total_transcript_sentiment_score + 1) / 2) * 9 + 1
body_language_score = data.get('body_language')['Good'] * 10
distraction_rate_score = data.get('distraction_rate') * 10
avg_text_score = user_chats[user_id]['test_results']['avg_text']
avg_code_score = user_chats[user_id]['test_results']['avg_code']
interview_score = (total_video_emotion_normalized_score + emotion_final_normalized_score + speech_sentiment_normalized_score + total_transcript_sentiment_normalized_score + body_language_score + distraction_rate_score + avg_text_score + avg_code_score)/7
print(interview_score)
user_chats[user_id]['interview_score'] = interview_score
user_chats[user_id]['user_id'] = user_id
print(user_chats[user_id])
# Store user_chats[user_id] into MongoDB...
del user_chats[user_id]["chat"]
result = interviews_collection.insert_one(user_chats[user_id])
print(result)
return jsonify({'success': True})
@app.route('/result', methods=['POST', 'GET'])
def result():
if request.method == 'POST':
data = request.get_json()
user_id = data.get('user_id')
if data.get('type') == 1:
result = interviews_collection.find({ "user_id" : user_id}, {"_id" : 1, "company_name" : 1, "difficulty_level" : 1, "interview_score" : 1, "position" : 1, "round" : 1 })
temp = []
for ele in result:
ele['_id'] = str(ele['_id'])
temp.append(ele)
return jsonify({'success': True, 'data': temp})
elif data.get('type') == 2:
result2 = interviews_collection.find_one({ "_id": ObjectId(data.get("_id")), "user_id": user_id })
if result2:
result2['_id'] = str(result2['_id'])
print(result2)
return jsonify({'success': True, 'data': result2})
else:
if not user_chats[user_id]['processed']:
return jsonify({'processing': True})
else:
return jsonify({'error': "No such record found."})
@app.route('/useridping', methods=['GET'])
def useridping():
if request.method == 'GET':
return jsonify(user_id_ping)
# User Routes
@app.route('/user/signup', methods=['POST'])
def signup():
data = request.json
name = data.get('name')
email = data.get('email')
password = data.get('password')
if not email:
return jsonify({"error": "Invalid email"}), 400
existing_user = users_collection.find_one({"email": email})
if existing_user:
return jsonify({"message": "User already exists"}), 404
hashed_password = bcrypt.generate_password_hash(password).decode('utf-8')
result = users_collection.insert_one({
"name": name,
"email": email,
"password": hashed_password
})
print(result)
expires = timedelta(days=7)
access_token = create_access_token(identity={"email": email, "id": str(result.inserted_id)}, expires_delta=expires)
res = {"name": name, "email": email}
return jsonify({"result": res, "token": access_token}), 201
@app.route('/user/signin', methods=['POST'])
def signin():
data = request.json
email = data.get('email')
password = data.get('password')
user = users_collection.find_one({"email": email})
if not user:
return jsonify({"message": "User doesn't exist"}), 404
if not bcrypt.check_password_hash(user['password'], password):
return jsonify({"message": "Invalid Credentials"}), 404
expires = timedelta(days=7)
access_token = create_access_token(identity={"email": user['email'], "id": str(user['_id'])}, expires_delta=expires)
res = {"name": user['name'], "email": user['email'], "user_id": str(user['_id'])}
return jsonify({"result": res, "token": access_token}), 200
#protected route wiht auth_user middleware
@app.route('/user/delete', methods=['POST'])
@auth_user
def delete_account():
email = request.email
print(email)
try:
result = users_collection.delete_one({"email": email})
if result.deleted_count == 1:
return jsonify({"result": True}), 200
else:
return jsonify({"result": False, "message": "User not found"}), 404
except Exception as e:
print(e)
return jsonify({"message": "Something went wrong"}), 500
# mindmap routes
@app.route('/mindmap/save', methods=['POST'])
@auth_user
def mindmapSave():
userId = request.userId
data = request.json
return saveMindmap(data, userId, savedMindmap)
@app.route('/mindmap/get', methods=['GET'])
@auth_user
def mindmapGet():
userId = request.userId
return getMindmap(userId, savedMindmap)
@app.route('/mindmap/get/<id>', methods=['GET'])
@auth_user
def mindmapGetById(id):
userId = request.userId
return getMindmapByid(userId, id, savedMindmap)
@app.route('/mindmap/delete', methods=['POST'])
@auth_user
def mindmapDelete():
userId = request.userId
data = request.json
return deleteMindmap(userId, data, savedMindmap)
@app.route('/mindmap/demo', methods=['POST'])
def mindmapDemo():
data = request.json
print(data)
return get_initial_data(), 200
if __name__ == '__main__':
app.run(debug=True) |