File size: 24,282 Bytes
07c0591
 
 
 
03e8a43
07c0591
 
03e8a43
07c0591
 
03e8a43
07c0591
03e8a43
 
b976a31
03e8a43
07c0591
 
03e8a43
b976a31
07c0591
 
 
 
dc818ff
 
07c0591
 
 
 
 
03e8a43
07c0591
03e8a43
07c0591
03e8a43
07c0591
b976a31
 
 
07c0591
 
 
 
 
 
 
 
 
 
 
 
 
 
b976a31
 
 
 
07c0591
 
 
 
b976a31
 
 
 
03e8a43
07c0591
 
 
 
 
b976a31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c0591
 
b976a31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c0591
b976a31
 
 
 
07c0591
b976a31
 
 
 
 
 
07c0591
 
b976a31
 
 
 
 
 
07c0591
b976a31
 
 
 
07c0591
b976a31
 
 
 
 
 
 
 
 
07c0591
 
 
 
 
 
b976a31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c0591
 
 
 
b976a31
07c0591
b976a31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c0591
 
b976a31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c0591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98df545
07c0591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b976a31
07c0591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b976a31
03e8a43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b976a31
 
07c0591
 
 
98df545
07c0591
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
from flask import Flask, jsonify, request
from flask_cors import CORS
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
from bson.objectid import ObjectId
import google.generativeai as genai
import urllib.parse
from models import UserSchema
from flask_bcrypt import Bcrypt
from flask_jwt_extended import JWTManager, create_access_token
from middleware.authUser import auth_user
from datetime import timedelta 
from controllers.demo import get_initial_data
from controllers.mindmap import saveMindmap, getMindmap, deleteMindmap, getMindmapByid
import json
from dotenv import load_dotenv
import os

load_dotenv()

app = Flask(__name__)

bcrypt = Bcrypt(app)
jwt = JWTManager(app)
CORS(app)

app.config['JWT_SECRET_KEY'] = os.getenv('JWT_SECRET')

# MongoDB configuration
username = urllib.parse.quote_plus(os.getenv('MONGO_USERNAME'))
password = urllib.parse.quote_plus(os.getenv('MONGO_PASSWORD'))
restUri = os.getenv('REST_URI')

uri = f'mongodb+srv://{username}:{password}{restUri}'

client = MongoClient(uri, server_api=ServerApi('1'))
db = client.GenUpNexus
users_collection = db["users"]
interviews_collection = db["interviews"]
savedMindmap = db["savedMindmap"]

# Send a ping to confirm a successful connection
try:
    client.admin.command('ping')
    print("Pinged your deployment. You successfully connected to MongoDB!")
except Exception as e:
    print(e)


GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')

genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel('gemini-pro')

# Caches to reduce no of queries to MongoDB...
user_id_ping = {'current': 0}
user_chats = {}

@app.route('/')
def index():
    return "Server is Running..."

@app.route('/index')
def index2():
    return "routes checking..."

@app.route('/tree', methods=["POST", "GET"])
def tree():
    if request.method == 'POST':
        data = request.get_json()
        query = data.get('query')
        print(query)
        response = model.generate_content('''I will give you a topic and you have to generate an explanation of the topic in points in hierarchical tree structure and respond with JSON structure as follows:
        {
            "name": "Java",
            "children": [
                {
                "name": "Development Environment",
                "children": [
                    {
                    "name": "Java Source Code",
                    "value": ".java files",
                    "description": "Human-readable code written with Java syntax."
                    },
                    {
                    "name": "Java Development Kit (JDK)",
                    "children": [
                        {
                        "name": "Compiler",
                        "value": "translates to bytecode",
                        "description": "Transforms Java source code into bytecode instructions understood by the JVM."
                        },
                        {
                        "name": "Java Class Library (JCL)",
                        "value": "predefined classes and functions",
                        "description": "Provides a collection of reusable code for common functionalities."
                        }
                    ]
                    }
                ]
                },
                {
                "name": "Execution",
                "children": [
                    {
                    "name": "Java Runtime Environment (JRE)",
                    "children": [
                        {
                        "name": "Java Virtual Machine (JVM)",
                        "value": "executes bytecode",
                        "description": "Software program that interprets and executes bytecode instructions."
                        },
                        {
                        "name": "Class Loader",
                        "value": "loads bytecode into memory",
                        "description": "Loads .class files containing bytecode into JVM memory for execution."
                        }
                    ]
                    },
                    {
                    "name": "Bytecode",
                    "value": ".class files (platform-independent)",
                    "description": "Machine-independent instructions generated by the compiler, executable on any system with JVM."
                    },
                    {
                    "name": "Just-In-Time (JIT) Compilation (optional)",
                    "value": "improves performance by translating bytecode to machine code",
                    "description": "Technique that translates frequently used bytecode sections into native machine code for faster execution."
                    }
                ]
                },
                {
                "name": "Key Features",
                "children": [
                    {
                    "name": "Object-Oriented Programming",
                    "value": "uses objects and classes",
                    "description": "Programs are structured around objects that encapsulate data and behavior."
                    },
                    {
                    "name": "Platform Independent (write once, run anywhere)",
                    "value": "bytecode runs on any system with JVM",
                    "description": "Java code can be compiled once and run on any platform with a JVM installed."
                    },
                    {
                    "name": "Garbage Collection",
                    "value": "automatic memory management",
                    "description": "JVM automatically reclaims memory from unused objects, simplifying memory management for developers."
                    }
                ]
                }
            ]
            }
            Topic is: ''' + query)
        
        # print(response.text)
        return jsonify({'success': True, 'data': response.text})
        # return temp 


@app.route('/tree/demo', methods=["POST"])
def treeDemo():
    if request.method == 'POST':
        data = request.get_json()
        query = data.get('query')
        print(query)
        response = model.generate_content('''Generate a comprehensive knowledge map representing the user's query, suitable for ReactFlow visualization.

        **Prompt:** {query}

        **Structure:**

        - Top-level node: Represent the user's query.
        - Sub-nodes branching out based on the query's relevance:
            - Leverage external knowledge sources (e.g., Wikipedia, knowledge graphs, domain-specific APIs) to identify relevant sub-concepts, related entities, and potential relationships.
        - Consider including different categories of sub-nodes:
            - **Concepts:** Core ideas or principles related to the query.
            - **Subfields:** Specialized areas within the main topic.
            - **Applications:** Practical uses of the concept or subfield.
            - **Tools and Technologies:** Software or platforms used to implement the concepts.
            - **Examples:** Illustrative instances or use cases.
            - **Historical Context:** Milestones or key figures in the topic's development.
            - **See Also:** Links to broader concepts or related areas for the further exploration.
            
                                                
        **Content:**

        - Each node should have a label describing the concept, entity, or tool.
        - Optionally, include brief descriptions, definitions, or key points within the nodes or as tooltips.
        - Consider using icons to visually represent different categories of nodes (e.g., light bulb for concepts, gear for tools, calendar for historical context, puzzle piece for subfields).
        - there should be atmax 10 nodes in the knowledge map.
        - Also follow the n-ary tree structure for better visualization.
        - Ensure the knowledge map is visually appealing, well-organized, and easy to navigate.

        **Desired Format:**

        - JSON structure compatible with ReactFlow:
            - nodes (list): id, position, data (label, description, icon(if required), category), type(input, output or custom), style (background, color).
            - edges (list): id, source, target, label(if required), animated (true or false), style (stroke).
        - keep the position of nodes spaced out for better visualization.
        - always keep the top-level node at the center of the visualization.
        - keep atleast 2 edges "animated":true.
        - Strictly keep the first node with style having color property with value blue and background property with value #0FFFF0.
        - Strictly keep the second node with type property value as custom.
        - You can style the nodes with different colors and edges with different colors. 
        - to edit edges add style with stroke property and a hexcode value to it.
                                        
        Topic is: ''' + query)
        
        # response.text(8,)
        print(response.text)
        json_data = response.text
        modified_json_data = json_data[8:-3]
        return jsonify({'success': True, 'data': modified_json_data})
        # return temp 


def res(user_id):
    avg_text = 0        
    avg_code = 0
    count = 0
    for i, ele in enumerate(user_chats[user_id]['chat'].history):
        if i == 0:
            continue

        if ele.role == 'model':
            temp = json.loads(ele.parts[0].text)
            print(temp)
            if 'question' in temp.keys():
                continue
            elif 'next_question' in temp.keys() or 'end' in temp.keys():
                count += 1
                avg_text += temp['text_correctness']
                if temp['code_correctness']:
                    avg_code += temp['code_correctness']
            print(json.loads(ele.parts[0].text), end='\n\n')

    avg_text /= count
    avg_code /= count

    user_chats[user_id]['test_results'] = {'avg_text': avg_text, 'avg_code': avg_code}

    return True


@app.route('/interview', methods=["POST", "GET"])
def interview():
    if request.method == 'POST':
        data = request.get_json()
        print(data)
        if data.get('from') == 'client':
            user_id = data.get('user_id')
            request_type = data.get('type')

            if request_type == 1:           # Initialize Questionarrie.
                chat = model.start_chat(history=[])
                user_chats[user_id] = {}
                user_chats[user_id]['chat'] = chat
                user_chats[user_id]['processed'] = False

                position = data.get('position')
                round = data.get('round')
                difficulty_level = data.get('difficulty_level')
                company_name = data.get('company_name')

                user_chats[user_id]['position'] = position
                user_chats[user_id]['round'] = round
                user_chats[user_id]['difficulty_level'] = difficulty_level
                user_chats[user_id]['company_name'] = company_name
                
                response = chat.send_message('''You are a Interviewer. I am providing you with the the position for which the inerview is, Round type, difficulty level of the interview to be conducted, Company name.
                                             You need to generate atmost 2 interview questions one after another.
                                             The questions may consists of writing a small code along with text as well.
                                             
                                             Now generate first question in following JSON format: 
                                             {
                                                "question": "What is ...?"
                                             }

                                             I will respond to the question in the following JSON format:
                                             {
                                                "text_answer": "answer ...",
                                                "code": "if any...."
                                             }
                                             
                                             Now after evaluating the answers you need to respond in the following JSON format:
                                             {
                                                "next_question": "What is ...?",
                                                "text_correctness": "Test the correctness of text and return a range from 1 to 5 of correctness of text.",
                                                "text_suggestions": "Some suggestions regarding the text_answer.... in string format."
                                                "code_correctness": "Test the correctness of code and return a range from 1 to 5 of correctness of code",
                                                "code_suggestions": "Any suggestions or optimizations to the code...in string format.",
                                             }

                                             At the end of the interview if no Questions are required then respond in the following format:
                                             {
                                                "text_correctness": "Test the correctness of text and return a range from 1 to 5 of correctness of text.",
                                                "text_suggestions": "Some suggestions regarding the text_answer...."
                                                "code_correctness": "Test the correctness of code and return a range from 1 to 5 of correctness of code",
                                                "code_suggestions": "Any suggestions or optimizations to the code...",
                                                "end": "No more Questions thanks for your time."
                                             }
                                             
                                             Here are the details:
                                             Position : '''+ position + '''
                                             Round: '''+ round + '''
                                             Difficullty Level : '''+ difficulty_level + '''
                                             Company Interview : ''' + company_name)
                print(response.text)
                temp = json.loads(response.text)
                user_chats[user_id]['qa'] = [{'question': temp['question']}]
                return jsonify({'success': True, 'data': response.text})
            
            if request_type == 2:
                text_data = data.get('text_data')
                code = data.get('code')

                chat = user_chats[user_id]['chat']
                response = chat.send_message('''{"text_answer": "''' + text_data + '''", "code": "''' + code + '''"}''')
                
                print(response.text)

                json_text =  json.loads(response.text)
                
                for i, ele in enumerate(user_chats[user_id]['qa']):
                    if i == len(user_chats[user_id]['qa'])-1:
                        ele['text_answer'] = text_data
                        ele['code_answer'] = code
                        ele['text_correctness'] = json_text['text_correctness']
                        ele['text_suggestions'] = json_text['text_suggestions']
                        ele['code_correctness'] = json_text['code_correctness']
                        ele['code_suggestions'] = json_text['code_suggestions']
                
                try:
                    if json_text['end']:
                        user_id_ping['current'] = user_id
                        if res(user_id):
                            print(user_chats[user_id])
                        return jsonify({'success': True, 'data': response.text, 'end': True})
                except Exception as e:
                    print(e)

                user_chats[user_id]['qa'].append({'question': json_text['next_question']})
            
                return jsonify({'success': True, 'data': response.text, 'end': False})

        
        elif data.get('from') == 'gradio':
            print(data)
            user_id = data.get('user_id')
            user_chats[user_id]['processed'] = True
            user_chats[user_id]['gradio_results'] = {'total_video_emotions': data.get('total_video_emotions'), 'emotions_final': data.get('emotions_final'), 'body_language': data.get('body_language'), 'distraction_rate': data.get('distraction_rate'), 'formatted_response': data.get('formatted_response'), 'total_transcript_sentiment': data.get('total_transcript_sentiment')}
            
            emotion_weights = {
                'admiration': 0.8,
                'amusement': 0.7,
                'angry': -0.8,
                'annoyance': -0.7,
                'approval': 0.9,
                'calm': 0.8,
                'caring': 0.8,
                'confusion': -0.5,
                'curiosity': 0.6,
                'desire': 0.7,
                'disappointment': -0.8,
                'disapproval': -0.9,
                'disgust': -0.9,
                'embarrassment': -0.7,
                'excitement': 0.8,
                'fear': -0.8,
                'fearful': -0.8,
                'gratitude': 0.9,
                'grief': -0.9,
                'happy': 0.9,
                'love': 0.9,
                'nervousness': -0.6,
                'optimism': 0.8,
                'pride': 0.9,
                'realization': 0.7,
                'relief': 0.8,
                'remorse': -0.8,
                'sad': -0.9,
                'surprise': 0.7,
                'surprised': 0.7,
                'neutral': 0.0
            }
            
            temp = data.get('total_video_emotions')
            temp2 = data.get('emotions_final')
            temp3 = data.get('formatted_response')
            temp4 = data.get('total_transcript_sentiment')

            total_video_emotion_score = sum(temp[emotion] * emotion_weights[emotion] for emotion in temp)
            total_video_emotion_normalized_score = ((total_video_emotion_score + 1) / 2) * 9 + 1

            emotion_final_score = sum(temp2[emotion] * emotion_weights[emotion] for emotion in temp2)
            emotion_final_normalized_score = ((emotion_final_score + 1) / 2) * 9 + 1

            speech_sentiment_score = sum(temp3[emotion] * emotion_weights[emotion] for emotion in temp3)
            speech_sentiment_normalized_score = ((speech_sentiment_score + 1) / 2) * 9 + 1

            total_transcript_sentiment_score = sum(temp4[emotion] * emotion_weights[emotion] for emotion in temp4)
            total_transcript_sentiment_normalized_score = ((total_transcript_sentiment_score + 1) / 2) * 9 + 1

            body_language_score = data.get('body_language')['Good'] * 10
            distraction_rate_score = data.get('distraction_rate') * 10

            avg_text_score = user_chats[user_id]['test_results']['avg_text']
            avg_code_score = user_chats[user_id]['test_results']['avg_code']

            interview_score = (total_video_emotion_normalized_score + emotion_final_normalized_score + speech_sentiment_normalized_score + total_transcript_sentiment_normalized_score + body_language_score + distraction_rate_score + avg_text_score + avg_code_score)/7

            print(interview_score)
            user_chats[user_id]['interview_score'] = interview_score
            
            user_chats[user_id]['user_id'] = user_id
            print(user_chats[user_id])

            # Store user_chats[user_id] into MongoDB...
            del user_chats[user_id]["chat"]
            result = interviews_collection.insert_one(user_chats[user_id])
            print(result)

            return jsonify({'success': True})
        

@app.route('/result', methods=['POST', 'GET'])
def result():
    if request.method == 'POST':
        data = request.get_json()
        user_id = data.get('user_id')

        if data.get('type') == 1:
            result = interviews_collection.find({ "user_id" : user_id}, {"_id" : 1, "company_name" : 1, "difficulty_level" : 1, "interview_score" : 1, "position" : 1, "round" : 1 })
            temp = []
            for ele in result:
                ele['_id'] = str(ele['_id'])
                temp.append(ele)

            return jsonify({'success': True, 'data': temp})
        
        elif data.get('type') == 2:
            result2 = interviews_collection.find_one({ "_id": ObjectId(data.get("_id")), "user_id": user_id })
            if result2:
                result2['_id'] = str(result2['_id'])
                print(result2)
                return jsonify({'success': True, 'data': result2})
            else:
                if not user_chats[user_id]['processed']:
                    return jsonify({'processing': True})
                else:
                    return jsonify({'error': "No such record found."})


@app.route('/useridping', methods=['GET'])
def useridping():
    if request.method == 'GET':
        return jsonify(user_id_ping)


# User Routes
@app.route('/user/signup', methods=['POST'])
def signup():
    data = request.json
    name = data.get('name')
    email = data.get('email')
    password = data.get('password')

    if not email:
        return jsonify({"error": "Invalid email"}), 400

    existing_user = users_collection.find_one({"email": email})

    if existing_user:
        return jsonify({"message": "User already exists"}), 404

    hashed_password = bcrypt.generate_password_hash(password).decode('utf-8')

    result = users_collection.insert_one({
        "name": name,
        "email": email,
        "password": hashed_password
    })

    print(result)

    expires = timedelta(days=7)
    access_token = create_access_token(identity={"email": email, "id": str(result.inserted_id)}, expires_delta=expires)

    res = {"name": name, "email": email}
    
    return jsonify({"result": res, "token": access_token}), 201

@app.route('/user/signin', methods=['POST'])
def signin():
    data = request.json
    email = data.get('email')
    password = data.get('password')

    user = users_collection.find_one({"email": email})

    if not user:
        return jsonify({"message": "User doesn't exist"}), 404

    if not bcrypt.check_password_hash(user['password'], password):
        return jsonify({"message": "Invalid Credentials"}), 404

    expires = timedelta(days=7)
    access_token = create_access_token(identity={"email": user['email'], "id": str(user['_id'])}, expires_delta=expires)

    res = {"name": user['name'], "email": user['email'], "user_id": str(user['_id'])}

    return jsonify({"result": res, "token": access_token}), 200

#protected route wiht auth_user middleware
@app.route('/user/delete', methods=['POST'])
@auth_user
def delete_account():
    email = request.email
    print(email)
    try:
        result = users_collection.delete_one({"email": email})
        if result.deleted_count == 1:
            return jsonify({"result": True}), 200
        else:
            return jsonify({"result": False, "message": "User not found"}), 404
    except Exception as e:
        print(e)
        return jsonify({"message": "Something went wrong"}), 500

# mindmap routes
@app.route('/mindmap/save', methods=['POST'])
@auth_user
def mindmapSave():
    userId = request.userId
    data = request.json
    return saveMindmap(data, userId, savedMindmap)

@app.route('/mindmap/get', methods=['GET'])
@auth_user
def mindmapGet():
    userId = request.userId
    return getMindmap(userId, savedMindmap)

@app.route('/mindmap/get/<id>', methods=['GET'])
@auth_user
def mindmapGetById(id):
    userId = request.userId
    return getMindmapByid(userId, id, savedMindmap)

@app.route('/mindmap/delete', methods=['POST'])
@auth_user
def mindmapDelete():
    userId = request.userId
    data = request.json
    return deleteMindmap(userId, data, savedMindmap)


@app.route('/mindmap/demo', methods=['POST'])
def mindmapDemo():
    data = request.json
    print(data)
    return get_initial_data(), 200


if __name__ == '__main__':
    app.run(debug=True)