Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
import os
|
5 |
import cv2 # Import OpenCV
|
@@ -14,111 +13,48 @@ def download_models(model_id):
|
|
14 |
return local_model_path
|
15 |
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
def yolov9_inference(img_path, model_id, conf_threshold, iou_threshold):
|
20 |
"""
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
:param model_id: Identifier of the YOLOv9 model.
|
25 |
-
:param conf_threshold: Confidence threshold for NMS.
|
26 |
-
:param iou_threshold: IoU threshold for NMS.
|
27 |
:param img_path: Path to the image file.
|
28 |
:return: Output image with detections.
|
29 |
"""
|
30 |
# Load the image from the file path
|
31 |
image = cv2.imread(img_path) # Use OpenCV to read the image
|
32 |
-
|
33 |
# Load the model
|
34 |
-
model_path = download_models(
|
35 |
-
model =
|
36 |
-
|
37 |
-
# Set model parameters
|
38 |
-
model.conf = conf_threshold
|
39 |
-
model.iou = iou_threshold
|
40 |
-
|
41 |
# Perform inference
|
42 |
-
|
43 |
|
44 |
# Optionally, show detection bounding boxes on image
|
45 |
-
|
46 |
-
|
47 |
-
return output[0]
|
48 |
-
|
49 |
|
50 |
-
|
51 |
|
52 |
|
53 |
def app():
|
54 |
with gr.Blocks():
|
55 |
with gr.Row():
|
56 |
with gr.Column():
|
57 |
-
img_path = gr.Image(type="
|
58 |
-
|
59 |
-
label="Model",
|
60 |
-
choices=[
|
61 |
-
"gelan-c-seg.pt",
|
62 |
-
"gelan-e.pt",
|
63 |
-
"yolov9-c.pt",
|
64 |
-
"yolov9-e.pt",
|
65 |
-
],
|
66 |
-
value="gelan-e.pt",
|
67 |
-
)
|
68 |
-
image_size = gr.Slider(
|
69 |
-
label="Image Size",
|
70 |
-
minimum=320,
|
71 |
-
maximum=1280,
|
72 |
-
step=32,
|
73 |
-
value=640,
|
74 |
-
)
|
75 |
-
conf_threshold = gr.Slider(
|
76 |
-
label="Confidence Threshold",
|
77 |
-
minimum=0.1,
|
78 |
-
maximum=1.0,
|
79 |
-
step=0.1,
|
80 |
-
value=0.4,
|
81 |
-
)
|
82 |
-
iou_threshold = gr.Slider(
|
83 |
-
label="IoU Threshold",
|
84 |
-
minimum=0.1,
|
85 |
-
maximum=1.0,
|
86 |
-
step=0.1,
|
87 |
-
value=0.5,
|
88 |
-
)
|
89 |
-
yolov9_infer = gr.Button(value="Inference")
|
90 |
-
|
91 |
with gr.Column():
|
92 |
-
|
93 |
|
94 |
-
|
95 |
fn=yolov9_inference,
|
96 |
-
inputs=[
|
97 |
-
|
98 |
-
image_size,
|
99 |
-
conf_threshold,
|
100 |
-
iou_threshold,
|
101 |
-
],
|
102 |
-
outputs=[output_numpy],
|
103 |
)
|
104 |
|
105 |
-
gradio_app = gr.Blocks()
|
106 |
-
with gradio_app:
|
107 |
-
gr.HTML(
|
108 |
-
"""
|
109 |
-
<h1 style='text-align: center'>
|
110 |
-
YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
|
111 |
-
</h1>
|
112 |
-
""")
|
113 |
-
gr.HTML(
|
114 |
-
"""
|
115 |
-
<h3 style='text-align: center'>
|
116 |
-
Follow me for more!
|
117 |
-
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
|
118 |
-
</h3>
|
119 |
-
""")
|
120 |
-
with gr.Row():
|
121 |
-
with gr.Column():
|
122 |
-
app()
|
123 |
|
|
|
|
|
|
|
|
|
|
|
124 |
gradio_app.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
import os
|
4 |
import cv2 # Import OpenCV
|
|
|
13 |
return local_model_path
|
14 |
|
15 |
|
16 |
+
def yolov9_inference(img_path):
|
|
|
|
|
17 |
"""
|
18 |
+
Perform inference on an image using the YOLOv9 model.
|
19 |
+
|
|
|
|
|
|
|
|
|
20 |
:param img_path: Path to the image file.
|
21 |
:return: Output image with detections.
|
22 |
"""
|
23 |
# Load the image from the file path
|
24 |
image = cv2.imread(img_path) # Use OpenCV to read the image
|
25 |
+
|
26 |
# Load the model
|
27 |
+
model_path = download_models("gelan-c-seg.pt")
|
28 |
+
model = cv2.dnn.readNetFromDarknet(model_path)
|
29 |
+
|
|
|
|
|
|
|
|
|
30 |
# Perform inference
|
31 |
+
# (Add your inference code here)
|
32 |
|
33 |
# Optionally, show detection bounding boxes on image
|
34 |
+
output_image = image # Placeholder for the output image
|
|
|
|
|
|
|
35 |
|
36 |
+
return output_image
|
37 |
|
38 |
|
39 |
def app():
|
40 |
with gr.Blocks():
|
41 |
with gr.Row():
|
42 |
with gr.Column():
|
43 |
+
img_path = gr.Image(type="file", label="Upload Image")
|
44 |
+
inference_button = gr.Button(label="Run Inference")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
with gr.Column():
|
46 |
+
output_image = gr.Image(label="Output Image")
|
47 |
|
48 |
+
inference_button.click(
|
49 |
fn=yolov9_inference,
|
50 |
+
inputs=[img_path],
|
51 |
+
outputs=[output_image],
|
|
|
|
|
|
|
|
|
|
|
52 |
)
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
gradio_app = gr.Interface(
|
56 |
+
app,
|
57 |
+
title="YOLOv9 Inference",
|
58 |
+
description="Perform object detection using the YOLOv9 model.",
|
59 |
+
)
|
60 |
gradio_app.launch(debug=True)
|