Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,19 +16,18 @@ def download_models(model_id):
|
|
16 |
def yolov9_inference(img):
|
17 |
"""
|
18 |
Perform inference on an image using the YOLOv9 model.
|
19 |
-
|
20 |
:param img: Input image.
|
21 |
:return: Output image with detections.
|
22 |
"""
|
23 |
# Load the model
|
24 |
model_path = download_models("gelan-c-seg.pt")
|
|
|
25 |
model = cv2.dnn.readNetFromDarknet(model_path)
|
26 |
# Perform inference
|
27 |
-
|
28 |
-
|
29 |
# Optionally, show detection bounding boxes on image
|
30 |
-
|
31 |
-
|
32 |
return output_image
|
33 |
|
34 |
|
|
|
16 |
def yolov9_inference(img):
|
17 |
"""
|
18 |
Perform inference on an image using the YOLOv9 model.
|
|
|
19 |
:param img: Input image.
|
20 |
:return: Output image with detections.
|
21 |
"""
|
22 |
# Load the model
|
23 |
model_path = download_models("gelan-c-seg.pt")
|
24 |
+
# Assuming you're using a YOLOv9 model from Ultralytics, you would typically use their library to load the model
|
25 |
model = cv2.dnn.readNetFromDarknet(model_path)
|
26 |
# Perform inference
|
27 |
+
# Placeholder for inference code; replace with your actual inference code
|
28 |
+
results = model.forward()
|
29 |
# Optionally, show detection bounding boxes on image
|
30 |
+
output_image = img # Placeholder for output image; replace with your actual output image
|
|
|
31 |
return output_image
|
32 |
|
33 |
|