Parthebhan commited on
Commit
d2a4763
·
verified ·
1 Parent(s): 1556f7a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -3,13 +3,12 @@ from huggingface_hub import hf_hub_download
3
  import os
4
  import cv2 # Import OpenCV
5
 
6
- # Function to download models from Hugging Face
7
  def download_models(model_id):
8
  # Check if the model file exists locally
9
- local_model_path = "./ gelan-c-seg.pt"
10
  if not os.path.exists(local_model_path):
11
  # Download the model from Hugging Face if it doesn't exist locally
12
- hf_hub_download("merve/yolov9", filename=" gelan-c-seg.pt", local_dir="./")
13
  return local_model_path
14
 
15
 
@@ -20,7 +19,7 @@ def yolov9_inference(img):
20
  :return: Output image with detections.
21
  """
22
  # Load the model
23
- model_path = download_models("gelan-c-seg.pt")
24
  # Assuming you're using a YOLOv9 model from Ultralytics, you would typically use their library to load the model
25
  model = cv2.dnn.readNetFromDarknet(model_path)
26
  # Perform inference
@@ -34,7 +33,7 @@ def yolov9_inference(img):
34
  def app():
35
  return gr.Interface(
36
  fn=yolov9_inference,
37
- inputs= gr.Image(type="filepath", label="Image"),
38
  outputs="image",
39
  title="YOLOv9 Inference",
40
  description="Perform object detection using the YOLOv9 model.",
 
3
  import os
4
  import cv2 # Import OpenCV
5
 
 
6
  def download_models(model_id):
7
  # Check if the model file exists locally
8
+ local_model_path = "./gelan-c-seg.pt"
9
  if not os.path.exists(local_model_path):
10
  # Download the model from Hugging Face if it doesn't exist locally
11
+ hf_hub_download(model_id, filename="gelan-c-seg.pt", local_dir="./")
12
  return local_model_path
13
 
14
 
 
19
  :return: Output image with detections.
20
  """
21
  # Load the model
22
+ model_path = download_models("merve/yolov9")
23
  # Assuming you're using a YOLOv9 model from Ultralytics, you would typically use their library to load the model
24
  model = cv2.dnn.readNetFromDarknet(model_path)
25
  # Perform inference
 
33
  def app():
34
  return gr.Interface(
35
  fn=yolov9_inference,
36
+ inputs=gr.inputs.Image(type="file", label="Image"),
37
  outputs="image",
38
  title="YOLOv9 Inference",
39
  description="Perform object detection using the YOLOv9 model.",