Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ title_mapping = {
|
|
14 |
'shipping.txt': 'shipping_data'
|
15 |
}
|
16 |
|
17 |
-
#
|
18 |
for file_name in os.listdir('.'):
|
19 |
if file_name in title_mapping:
|
20 |
try:
|
@@ -26,22 +26,29 @@ for file_name in os.listdir('.'):
|
|
26 |
except Exception as e:
|
27 |
print(f"Error processing file {file_name}: {e}")
|
28 |
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
|
|
35 |
try:
|
36 |
-
genai.
|
|
|
|
|
|
|
|
|
37 |
except Exception as e:
|
38 |
-
|
39 |
-
|
40 |
-
# Function to embed text using the Google Generative AI AP
|
41 |
-
def embed_text(text):
|
42 |
-
return genai.embed_content(model='models/embedding-001', content=text, task_type='retrieval_document')['embedding']
|
43 |
|
44 |
-
#
|
45 |
if 'Embeddings' not in df.columns:
|
46 |
df['Embeddings'] = df['Text'].apply(embed_text)
|
47 |
|
@@ -52,29 +59,31 @@ def query_similarity_score(query, vector):
|
|
52 |
|
53 |
# Function to get the most similar document based on the query
|
54 |
def most_similar_document(query):
|
55 |
-
# Create a local DataFrame copy to store similarity scores
|
56 |
local_df = df.copy()
|
57 |
-
# Calculate similarity for all rows
|
58 |
local_df['Similarity'] = local_df['Embeddings'].apply(lambda vector: query_similarity_score(query, vector))
|
59 |
-
# Sort by similarity score and retrieve the top match
|
60 |
most_similar = local_df.sort_values('Similarity', ascending=False).iloc[0]
|
61 |
return most_similar['Title'], most_similar['Text']
|
62 |
|
63 |
# Function to generate a response using the RAG approach
|
64 |
def RAG(query):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
70 |
|
|
|
71 |
iface = gr.Interface(
|
72 |
fn=RAG, # Main function to handle the query
|
73 |
inputs=[
|
74 |
gr.Textbox(label="Enter Your Query"), # Input for the user's query
|
75 |
],
|
76 |
outputs=gr.Textbox(label="Response"), # Output for the generated response
|
77 |
-
title="Patrick's Multilingual Query
|
78 |
)
|
79 |
|
80 |
-
|
|
|
|
14 |
'shipping.txt': 'shipping_data'
|
15 |
}
|
16 |
|
17 |
+
# Process relevant files in the current directory
|
18 |
for file_name in os.listdir('.'):
|
19 |
if file_name in title_mapping:
|
20 |
try:
|
|
|
26 |
except Exception as e:
|
27 |
print(f"Error processing file {file_name}: {e}")
|
28 |
|
29 |
+
# Get the Google API key from environment variables
|
30 |
+
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
|
31 |
+
if not GEMINI_API_KEY:
|
32 |
+
raise EnvironmentError("Error: Gemini API key not found. Please set the GOOGLE_API_KEY environment variable.")
|
33 |
|
34 |
+
# Configure the Gemini API
|
35 |
+
try:
|
36 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
37 |
+
except Exception as e:
|
38 |
+
raise RuntimeError(f"Error: Failed to configure the Gemini API. Details: {e}")
|
39 |
|
40 |
+
# Function to embed text using the Google Generative AI API
|
41 |
+
def embed_text(text):
|
42 |
try:
|
43 |
+
return genai.embed_content(
|
44 |
+
model='models/embedding-001',
|
45 |
+
content=text,
|
46 |
+
task_type='retrieval_document'
|
47 |
+
)['embedding']
|
48 |
except Exception as e:
|
49 |
+
raise RuntimeError(f"Error embedding text: {e}")
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# Add embeddings to the DataFrame
|
52 |
if 'Embeddings' not in df.columns:
|
53 |
df['Embeddings'] = df['Text'].apply(embed_text)
|
54 |
|
|
|
59 |
|
60 |
# Function to get the most similar document based on the query
|
61 |
def most_similar_document(query):
|
|
|
62 |
local_df = df.copy()
|
|
|
63 |
local_df['Similarity'] = local_df['Embeddings'].apply(lambda vector: query_similarity_score(query, vector))
|
|
|
64 |
most_similar = local_df.sort_values('Similarity', ascending=False).iloc[0]
|
65 |
return most_similar['Title'], most_similar['Text']
|
66 |
|
67 |
# Function to generate a response using the RAG approach
|
68 |
def RAG(query):
|
69 |
+
try:
|
70 |
+
title, text = most_similar_document(query)
|
71 |
+
model = genai.GenerativeModel('gemini-pro')
|
72 |
+
prompt = f"Answer this query:\n{query}.\nOnly use this context to answer:\n{text}"
|
73 |
+
response = model.generate_content(prompt)
|
74 |
+
return f"{response.text}\n\nSource Document: {title}"
|
75 |
+
except Exception as e:
|
76 |
+
return f"Error: {e}"
|
77 |
|
78 |
+
# Gradio interface
|
79 |
iface = gr.Interface(
|
80 |
fn=RAG, # Main function to handle the query
|
81 |
inputs=[
|
82 |
gr.Textbox(label="Enter Your Query"), # Input for the user's query
|
83 |
],
|
84 |
outputs=gr.Textbox(label="Response"), # Output for the generated response
|
85 |
+
title="Patrick's Multilingual Query Handler"
|
86 |
)
|
87 |
|
88 |
+
if __name__ == "__main__":
|
89 |
+
iface.launch()
|