File size: 6,551 Bytes
0703e71
210b40c
e303329
d232ed1
b5e9a85
5b6755d
ad3245e
57cf6db
d232ed1
0703e71
5b6755d
80390bf
 
 
 
60ffe71
5b6755d
 
 
48fb46d
5b6755d
 
 
 
 
 
f03cfb2
 
 
 
 
 
bd26917
f03cfb2
 
 
 
60ffe71
210b40c
 
 
 
 
090dd00
210b40c
 
 
090dd00
210b40c
 
 
090dd00
210b40c
 
 
 
 
 
f21f2ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a73aede
f21f2ed
 
a73aede
f21f2ed
 
 
 
 
 
0a402b2
f21f2ed
0a402b2
0108e87
f21f2ed
 
e899803
 
 
 
 
 
 
 
5b6755d
f03cfb2
 
80390bf
090dd00
bc3ac0f
5b6755d
 
 
76c4bfe
8672bbc
e899803
 
8d436a0
 
896848b
 
5b6755d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896848b
 
d232ed1
f03cfb2
 
 
 
bd26917
9d86cbe
 
 
 
 
896848b
 
 
 
bd26917
f03cfb2
9d86cbe
f21f2ed
 
896848b
f03cfb2
 
bd26917
f03cfb2
 
bd26917
f03cfb2
bd26917
f03cfb2
 
d232ed1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces
import openai
import json
import re

HF_TOKEN = os.environ.get("HF_TOKEN", None)
LEPTON_API_TOKEN = os.environ.get("LEPTON_API_TOKEN", None)
# if torch.cuda.is_available():
#     device = "cuda:0"
# else:
#     device = "cpu"

# Set up client to call inference
client=openai.OpenAI(
    base_url="https://yb15a7dy-lynx-70b.tin.lepton.run/api/v1/",
    api_key=LEPTON_API_TOKEN
)

# Create own model
# tokenizer = AutoTokenizer.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct")
# model = AutoModelForCausalLM.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct", torch_dtype=torch.float16, device_map="auto")
# model.gradient_checkpointing_enable()

# def load_model_and_tokenizer(model_choice):
#     if model_choice == "Patronus Lynx 8B":
#         model_name = "PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct"
#     else:
#         model_name = "PatronusAI/Llama-3-Patronus-Lynx-70B-Instruct"
    
#     tokenizer = AutoTokenizer.from_pretrained(model_name)
#     model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto").to(device)
#     model.gradient_checkpointing_enable()
#     return tokenizer, model

PROMPT = """
Given the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning.

--
QUESTION (THIS DOES NOT COUNT AS BACKGROUND INFORMATION):
{question}

--
DOCUMENT:
{document}

--
ANSWER:
{answer}

--

Your output should be in JSON FORMAT with the keys "REASONING" and "SCORE":
{{"REASONING": <your reasoning as bullet points>, "SCORE": <your final score>}}
"""

HEADER = """
# Patronus Lynx Demo
<table bgcolor="#1E2432" cellspacing="0" cellpadding="0"  width="450">
<tr style="height:50px;">
<td style="text-align: center;">
<a href="https://www.patronus.ai">
<img src="https://cdn.prod.website-files.com/64e655d42d3be60f582d0472/64ede352897bcddbe2d41207_patronusai_final_logo.svg" width="200" height="40" />
</a>
</td>
</tr>
</table>
<table bgcolor="#1E2432" cellspacing="0" cellpadding="0"  width="450">
<tr style="height:30px;">
<td style="text-align: center;">
<a href="https://huggingface.co/PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange" height="20"></a>
</td>
<td style="text-align: center;">
<a href="https://github.com/patronus-ai/Lynx-hallucination-detection"><img src="https://postimage.me/images/2024/03/04/GitHub_Logo_White.png" width="100" height="20"></a>
</td>
<td style="text-align: center; color: white;">
<a href="https://arxiv.org/abs/2407.08488"><img src="https://img.shields.io/badge/arXiv-2407.08488-b31b1b.svg" height="20"></a>
</td>
</tr>
</table>

**Patronus Lynx** is a state-of-the-art open-source model for hallucination detection.

**Getting Started**: Provide a question and document or context given to your model in addition to the answer given by the model and then click submit. The output panel will indicate whether the reponse is a hallucination (Fail) or if it is faithful to the given document or context (Pass) through the score Pass or Fail and provide reasoning behind the score.
"""

def clean_json_string(json_str):
    # Replace single quotes with double quotes, but not apostrophes within words
    json_str = re.sub(r"(?<!\\)'([^']*)'", r'"\1"', json_str)
    # Add quotes around PASS or FAIL if they're not already quoted
    json_str = re.sub(r'"SCORE":\s*(PASS|FAIL)', r'"SCORE": "\1"', json_str)
    
    return json_st

# @spaces.GPU()
# def model_call(question, document, answer, tokenizer, model):
def model_call(question, document, answer):
    # device = next(model.parameters()).device
    NEW_FORMAT = PROMPT.format(question=question, document=document, answer=answer)
    print("ENTIRE NEW_FORMAT", NEW_FORMAT)
    response = client.completions.create(
        model="gpt-3.5-turbo-instruct",
        prompt=NEW_FORMAT
    )
    print("RESPONSE FROM CLIENT:", response)
    generated_text = clean_json_string(response.choices[0].text)
    generated_text = json.loads(generated_text)
    print("GENERATED TEXT", generated_text)
    print("type of GENERATED TEXT", type(generated_text))
    reasoning = generated_text["REASONING"][0]
    score = generated_text["SCORE"]
    # inputs = tokenizer(NEW_FORMAT, return_tensors="pt")
    # print("INPUTS", inputs)
    # input_ids = inputs.input_ids
    # attention_mask = inputs.attention_mask
    # generate_kwargs = dict(
    #     input_ids=input_ids,
    #     do_sample=True,
    #     attention_mask=attention_mask,
    #     pad_token_id=tokenizer.eos_token_id,
    # )
    # print("GENERATE_KWARGS", generate_kwargs)
    # with torch.no_grad():
    #     outputs = model.generate(**generate_kwargs)
    # print("OUTPUTS", outputs)
    # generated_text = tokenizer.decode(outputs[0])
    # print(generated_text)
    return reasoning, score

# def update_model(model_choice, tokenizer_state, model_state):
#     new_tokenizer, new_model = load_model_and_tokenizer(model_choice)
#     print("UPDATED MODEL", new_tokenizer, new_model)
#     return new_tokenizer, new_model

inputs = [
    gr.Textbox(label="Question"),
    gr.Textbox(label="Document"),
    gr.Textbox(label="Answer")
]
outputs = [
    gr.Textbox(label="Reasoning"),
    gr.Textbox(label="Score")
]

# submit_button = gr.Button("Submit")

with gr.Blocks() as demo:
    gr.Markdown(HEADER)
    gr.Interface(fn=model_call, inputs=inputs, outputs=outputs)
    # tokenizer_state = gr.State()
    # model_state = gr.State()

    # model_dropdown = gr.Dropdown(choices=["Patronus Lynx 8B", "Patronus Lynx 70B"], value="Patronus Lynx 8B", label="Model")
    # model_dropdown.change(fn=update_model, inputs=[model_dropdown, tokenizer_state, model_state], outputs=[tokenizer_state, model_state])

    # submit_button.click(fn=model_call, inputs=inputs, outputs=output)

# initial_tokenizer, initial_model = load_model_and_tokenizer("Patronus Lynx 8B")
# demo.load(fn=lambda: (initial_tokenizer, initial_model), outputs=[tokenizer_state, model_state])
demo.launch()