Spaces:
Sleeping
Sleeping
File size: 4,898 Bytes
0703e71 210b40c e303329 d232ed1 b5e9a85 5b6755d ad3245e 57cf6db d232ed1 0703e71 5b6755d 60ffe71 5b6755d 48fb46d 5b6755d 210b40c 090dd00 210b40c 090dd00 210b40c 090dd00 210b40c f21f2ed a73aede f21f2ed a73aede f21f2ed 0a402b2 f21f2ed 0a402b2 0108e87 f21f2ed e899803 68fe1ac e899803 f03cfb2 eb7b56f 1aa6e35 090dd00 bc3ac0f 5b6755d 76c4bfe 8672bbc e899803 8d436a0 896848b d232ed1 9d86cbe 896848b bd26917 f21f2ed 5aab811 a32e6bd bd26917 f03cfb2 bd26917 5aab811 bd26917 d232ed1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces
import openai
import json
import re
HF_TOKEN = os.environ.get("HF_TOKEN", None)
LEPTON_API_TOKEN = os.environ.get("LEPTON_API_TOKEN", None)
client=openai.OpenAI(
base_url="https://yb15a7dy-lynx-70b.tin.lepton.run/api/v1/",
api_key=LEPTON_API_TOKEN
)
PROMPT = """
Given the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning.
--
QUESTION (THIS DOES NOT COUNT AS BACKGROUND INFORMATION):
{question}
--
DOCUMENT:
{document}
--
ANSWER:
{answer}
--
Your output should be in JSON FORMAT with the keys "REASONING" and "SCORE":
{{"REASONING": <your reasoning as bullet points>, "SCORE": <your final score>}}
"""
HEADER = """
# Patronus Lynx Demo
<table bgcolor="#1E2432" cellspacing="0" cellpadding="0" width="450">
<tr style="height:50px;">
<td style="text-align: center;">
<a href="https://www.patronus.ai">
<img src="https://cdn.prod.website-files.com/64e655d42d3be60f582d0472/64ede352897bcddbe2d41207_patronusai_final_logo.svg" width="200" height="40" />
</a>
</td>
</tr>
</table>
<table bgcolor="#1E2432" cellspacing="0" cellpadding="0" width="450">
<tr style="height:30px;">
<td style="text-align: center;">
<a href="https://huggingface.co/PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange" height="20"></a>
</td>
<td style="text-align: center;">
<a href="https://github.com/patronus-ai/Lynx-hallucination-detection"><img src="https://postimage.me/images/2024/03/04/GitHub_Logo_White.png" width="100" height="20"></a>
</td>
<td style="text-align: center; color: white;">
<a href="https://arxiv.org/abs/2407.08488"><img src="https://img.shields.io/badge/arXiv-2407.08488-b31b1b.svg" height="20"></a>
</td>
</tr>
</table>
**Patronus Lynx** is a state-of-the-art open-source model for hallucination detection.
**Getting Started**: Provide a question and document or context given to your model in addition to the answer given by the model and then click submit. The output panel will indicate whether the reponse is a hallucination (Fail) or if it is faithful to the given document or context (Pass) through the score Pass or Fail and provide reasoning behind the score.
"""
def clean_json_string(json_str):
# Replace single quotes with double quotes, but not apostrophes within words
json_str = re.sub(r"(?<!\\)'([^']*)'", r'"\1"', json_str)
# Add quotes around PASS or FAIL if they're not already quoted
json_str = re.sub(r'"SCORE":\s*(PASS|FAIL)', r'"SCORE": "\1"', json_str)
return json_str
def model_call(question, document, answer):
if question == "" or document == "" or answer == "":
return "", ""
NEW_FORMAT = PROMPT.format(question=question, document=document, answer=answer)
print("ENTIRE NEW_FORMAT", NEW_FORMAT)
response = client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt=NEW_FORMAT
)
print("RESPONSE FROM CLIENT:", response)
generated_text = clean_json_string(response.choices[0].text)
generated_text = json.loads(generated_text)
print("GENERATED TEXT", generated_text)
print("type of GENERATED TEXT", type(generated_text))
reasoning = generated_text["REASONING"][0]
score = generated_text["SCORE"]
return reasoning, score
inputs = [
gr.Textbox(label="Question"),
gr.Textbox(label="Document"),
gr.Textbox(label="Answer")
]
outputs = [
gr.Textbox(label="Reasoning"),
gr.Textbox(label="Score")
]
with gr.Blocks() as demo:
gr.Markdown(HEADER)
# gr.Interface(fn=model_call, inputs=inputs, outputs=outputs)
with gr.Row():
with gr.Column(scale=1):
question = gr.Textbox(label="Question")
document = gr.Textbox(label="Document")
answer = gr.Textbox(label="Answer")
submit_button = gr.Button("Submit")
with gr.Column(scale=1):
reasoning = gr.Textbox(label="Reasoning")
score = gr.Textbox(label="Score")
# model_dropdown = gr.Dropdown(choices=["Patronus Lynx 8B", "Patronus Lynx 70B"], value="Patronus Lynx 8B", label="Model")
# model_dropdown.change(fn=update_model, inputs=[model_dropdown, tokenizer_state, model_state], outputs=[tokenizer_state, model_state])
submit_button.click(fn=model_call, inputs=[question, document, answer], outputs=[reasoning, score])
demo.launch()
|