Paul-Joshi commited on
Commit
583eadd
·
verified ·
1 Parent(s): 9eb7e96

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +101 -0
  2. css_template.py +44 -0
  3. requirements.txt +10 -0
app.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from dotenv import load_dotenv
3
+ from PyPDF2 import PdfReader
4
+ from langchain.text_splitter import CharacterTextSplitter
5
+ from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
6
+ from langchain.vectorstores import FAISS
7
+ from langchain.chat_models import ChatOpenAI
8
+ from langchain.memory import ConversationBufferMemory
9
+ from langchain.chains import ConversationalRetrievalChain
10
+ from css_template import css, bot_template, user_template
11
+ from langchain.llms import HuggingFaceHub
12
+ import os
13
+ os.environ['FAISS_NO_AVX2'] = '1'
14
+
15
+ def method_get_pdf_text(pdf_docs):
16
+ text = ""
17
+ for pdf in pdf_docs:
18
+ pdf_reader = PdfReader(pdf)
19
+ for page in pdf_reader.pages:
20
+ text += page.extract_text()
21
+ return text
22
+
23
+
24
+ def method_get_text_chunks(text):
25
+ text_splitter = CharacterTextSplitter(
26
+ separator="\n",
27
+ chunk_size=1000,
28
+ chunk_overlap=200,
29
+ length_function=len
30
+ )
31
+ chunks = text_splitter.split_text(text)
32
+ return chunks
33
+
34
+
35
+ def method_get_vectorstore(text_chunks):
36
+ # embeddings = OpenAIEmbeddings()
37
+ embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
38
+ vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
39
+ return vectorstore
40
+
41
+
42
+ def method_get_conversation_chain(vectorstore):
43
+ #llm = ChatOpenAI()
44
+ llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
45
+
46
+ memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
47
+ conversation_chain = ConversationalRetrievalChain.from_llm(
48
+ llm=llm,
49
+ retriever=vectorstore.as_retriever(),
50
+ memory=memory
51
+ )
52
+ return conversation_chain
53
+
54
+
55
+ def method_handle_userinput(user_question):
56
+ response = st.session_state.conversation({'question': user_question})
57
+ st.session_state.chat_history = response['chat_history']
58
+
59
+ for i, message in enumerate(st.session_state.chat_history):
60
+ if i % 2 == 0:
61
+ st.write(user_template.replace(
62
+ "{{MSG}}", message.content), unsafe_allow_html=True)
63
+ else:
64
+ st.write(bot_template.replace(
65
+ "{{MSG}}", message.content), unsafe_allow_html=True)
66
+
67
+
68
+ def main():
69
+ load_dotenv()
70
+ st.set_page_config(page_title="Converse with multiple PDFs",page_icon=":books:")
71
+ st.write(css, unsafe_allow_html=True)
72
+
73
+ if "conversation" not in st.session_state:
74
+ st.session_state.conversation = None
75
+ if "chat_history" not in st.session_state:
76
+ st.session_state.chat_history = None
77
+
78
+ st.header("Converse with multiple PDFs :books:")
79
+ user_question = st.text_input("Ask a question about your documents:")
80
+ if user_question:
81
+ method_handle_userinput(user_question)
82
+
83
+ with st.sidebar:
84
+ st.subheader("Documents Upload")
85
+ pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Submit'", accept_multiple_files=True)
86
+ if st.button("Submit"):
87
+ with st.spinner("Processing"):
88
+ # get pdf text
89
+ raw_text = method_get_pdf_text(pdf_docs)
90
+ # get the text chunks
91
+ text_chunks = method_get_text_chunks(raw_text)
92
+ # create vector store
93
+ vectorstore = method_get_vectorstore(text_chunks)
94
+ st.write(text_chunks)
95
+ # create conversation chain
96
+ st.session_state.conversation = method_get_conversation_chain(vectorstore)
97
+
98
+
99
+
100
+ if __name__ == '__main__':
101
+ main()
css_template.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ css = '''
2
+ <style>
3
+ .chat-message {
4
+ padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
5
+ }
6
+ .chat-message.user {
7
+ background-color: #2b313e
8
+ }
9
+ .chat-message.bot {
10
+ background-color: #475063
11
+ }
12
+ .chat-message .avatar {
13
+ width: 20%;
14
+ }
15
+ .chat-message .avatar img {
16
+ max-width: 78px;
17
+ max-height: 78px;
18
+ border-radius: 50%;
19
+ object-fit: cover;
20
+ }
21
+ .chat-message .message {
22
+ width: 80%;
23
+ padding: 0 1.5rem;
24
+ color: #fff;
25
+ }
26
+ '''
27
+
28
+ bot_template = '''
29
+ <div class="chat-message bot">
30
+ <div class="avatar">
31
+ <img src="https://i.ibb.co/tXpSR5B/User.jpg" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
32
+ </div>
33
+ <div class="message">{{MSG}}</div>
34
+ </div>
35
+ '''
36
+
37
+ user_template = '''
38
+ <div class="chat-message user">
39
+ <div class="avatar">
40
+ <img src="https://i.ibb.co/cChdMtR/Paul.png">
41
+ </div>
42
+ <div class="message">{{MSG}}</div>
43
+ </div>
44
+ '''
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ langchain==0.0.184
2
+ PyPDF2==3.0.1
3
+ python-dotenv==1.0.0
4
+ streamlit==1.18.1
5
+ faiss-cpu==1.7.4
6
+ altair==4
7
+ tiktoken==0.4.0
8
+ huggingface-hub==0.14.1
9
+ InstructorEmbedding==1.0.1
10
+ sentence-transformers==2.2.2