Paul-Joshi commited on
Commit
07ecaec
·
verified ·
1 Parent(s): cef4abb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -1
app.py CHANGED
@@ -13,6 +13,7 @@ from langchain_core.prompts import ChatPromptTemplate
13
 
14
  from langchain_community.embeddings import HuggingFaceEmbeddings
15
  from langchain import hub
 
16
 
17
  # Convert string of URLs to list
18
  def method_get_website_text(urls):
@@ -31,9 +32,12 @@ def method_get_text_chunks(text):
31
  #convert text chunks into embeddings and store in vector database
32
  def method_get_vectorstore(document_chunks):
33
  # create the open-source embedding function
34
- embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
35
  #embeddings = HuggingFaceEmbeddings()
36
 
 
 
 
37
  # create a vectorstore from the chunks
38
  vector_store = Chroma.from_documents(document_chunks, embeddings)
39
  return vector_store
 
13
 
14
  from langchain_community.embeddings import HuggingFaceEmbeddings
15
  from langchain import hub
16
+ from sentence_transformers import SentenceTransformer
17
 
18
  # Convert string of URLs to list
19
  def method_get_website_text(urls):
 
32
  #convert text chunks into embeddings and store in vector database
33
  def method_get_vectorstore(document_chunks):
34
  # create the open-source embedding function
35
+ #embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
36
  #embeddings = HuggingFaceEmbeddings()
37
 
38
+ model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5")
39
+ embeddings = model.encode()
40
+
41
  # create a vectorstore from the chunks
42
  vector_store = Chroma.from_documents(document_chunks, embeddings)
43
  return vector_store