Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -62,23 +62,30 @@
|
|
62 |
# )
|
63 |
|
64 |
# demo.launch()
|
|
|
65 |
import gradio as gr
|
66 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
67 |
from PIL import Image
|
68 |
-
import re
|
69 |
|
70 |
# Load model & processor once at startup
|
71 |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
72 |
model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
73 |
|
74 |
-
def
|
75 |
-
# Remove
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
def smoldocling_readimage(image, prompt_text):
|
84 |
messages = [
|
@@ -89,11 +96,10 @@ def smoldocling_readimage(image, prompt_text):
|
|
89 |
outputs = model.generate(**inputs, max_new_tokens=1024)
|
90 |
prompt_length = inputs.input_ids.shape[1]
|
91 |
generated = outputs[:, prompt_length:]
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
return numbers
|
97 |
|
98 |
# Gradio UI
|
99 |
demo = gr.Interface(
|
@@ -102,9 +108,9 @@ demo = gr.Interface(
|
|
102 |
gr.Image(type="pil", label="Upload Image"),
|
103 |
gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Convert to docling)", label="Prompt"),
|
104 |
],
|
105 |
-
outputs=
|
106 |
-
title="SmolDocling Web App
|
107 |
-
description="Upload a document image and
|
108 |
)
|
109 |
|
110 |
demo.launch()
|
|
|
62 |
# )
|
63 |
|
64 |
# demo.launch()
|
65 |
+
import re
|
66 |
import gradio as gr
|
67 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
68 |
from PIL import Image
|
|
|
69 |
|
70 |
# Load model & processor once at startup
|
71 |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
72 |
model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
73 |
|
74 |
+
def extract_values(docling_text):
|
75 |
+
# Remove all <loc_*> tags
|
76 |
+
cleaned = re.sub(r"<loc_\d+>", "", docling_text)
|
77 |
+
# Split rows by <nl>
|
78 |
+
rows = cleaned.split("<nl>")
|
79 |
+
result = []
|
80 |
+
for row in rows:
|
81 |
+
if not row.strip():
|
82 |
+
continue
|
83 |
+
# Extract numbers inside <fcel> tags
|
84 |
+
values = re.findall(r"<fcel>(.*?)<fcel>", row)
|
85 |
+
# Convert to float list
|
86 |
+
float_values = [float(v) for v in values]
|
87 |
+
result.append(float_values)
|
88 |
+
return result
|
89 |
|
90 |
def smoldocling_readimage(image, prompt_text):
|
91 |
messages = [
|
|
|
96 |
outputs = model.generate(**inputs, max_new_tokens=1024)
|
97 |
prompt_length = inputs.input_ids.shape[1]
|
98 |
generated = outputs[:, prompt_length:]
|
99 |
+
raw_result = processor.batch_decode(generated, skip_special_tokens=False)[0]
|
100 |
+
# Clean and extract numeric values
|
101 |
+
values_array = extract_values(raw_result)
|
102 |
+
return str(values_array)
|
|
|
103 |
|
104 |
# Gradio UI
|
105 |
demo = gr.Interface(
|
|
|
108 |
gr.Image(type="pil", label="Upload Image"),
|
109 |
gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Convert to docling)", label="Prompt"),
|
110 |
],
|
111 |
+
outputs="text",
|
112 |
+
title="SmolDocling Web App",
|
113 |
+
description="Upload a document image and convert it to structured docling format."
|
114 |
)
|
115 |
|
116 |
demo.launch()
|