|
import os |
|
import gradio as gr |
|
import logging |
|
from langchain.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.embeddings import OpenAIEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.chains import ConversationalRetrievalChain, LLMChain |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.prompts import PromptTemplate |
|
from PyPDF2 import PdfReader |
|
|
|
class ContextAwareResponseGenerator: |
|
def __init__(self, llm): |
|
self.llm = llm |
|
self.response_prompt = PromptTemplate( |
|
input_variables=['context', 'query', 'chat_history'], |
|
template="""Analyze the context, query, and chat history to generate an optimal response: |
|
|
|
Context: {context} |
|
Query: {query} |
|
Chat History: {chat_history} |
|
|
|
Response Structure Selection Criteria: |
|
1. Technical academic breakdown |
|
2. Concise summary with key points |
|
3. Markdown with hierarchical insights |
|
4. Narrative explanation |
|
5. Comparative analysis |
|
|
|
Choose the most appropriate response structure (1-5) and generate the response accordingly:""" |
|
) |
|
self.response_chain = LLMChain(llm=self.llm, prompt=self.response_prompt) |
|
|
|
def generate_response(self, context, query, chat_history=''): |
|
try: |
|
|
|
full_response = self.response_chain.run({ |
|
'context': context, |
|
'query': query, |
|
'chat_history': chat_history or "No previous context" |
|
}) |
|
|
|
|
|
response_content = full_response[1:].strip() |
|
|
|
return response_content |
|
except Exception as e: |
|
logging.error(f"Response generation error: {e}") |
|
return f"I couldn't generate a response for: {query}" |
|
|
|
class AdvancedPdfChatbot: |
|
def __init__(self, openai_api_key): |
|
os.environ["OPENAI_API_KEY"] = openai_api_key |
|
self.llm = ChatOpenAI(temperature=0.2, model_name='gpt-4o') |
|
|
|
self.embeddings = OpenAIEmbeddings() |
|
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) |
|
|
|
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) |
|
self.response_generator = ContextAwareResponseGenerator(self.llm) |
|
|
|
self.db = None |
|
self.document_context = "" |
|
|
|
def load_and_process_pdf(self, pdf_path): |
|
try: |
|
reader = PdfReader(pdf_path) |
|
metadata = { |
|
"title": reader.metadata.get("/Title", "Untitled"), |
|
"author": reader.metadata.get("/Author", "Unknown") |
|
} |
|
|
|
loader = PyPDFLoader(pdf_path) |
|
documents = loader.load() |
|
texts = self.text_splitter.split_documents(documents) |
|
|
|
self.db = FAISS.from_documents(texts[:50], self.embeddings) |
|
self.document_context = f"Document: {metadata['title']} by {metadata['author']}" |
|
|
|
return True |
|
except Exception as e: |
|
logging.error(f"PDF processing error: {e}") |
|
return False |
|
|
|
def chat(self, query): |
|
if not self.db: |
|
return "Please upload a PDF first." |
|
|
|
|
|
chat_history = self.memory.load_memory_variables({}).get('chat_history', []) |
|
|
|
|
|
response = self.response_generator.generate_response( |
|
context=self.document_context, |
|
query=query, |
|
chat_history=str(chat_history) |
|
) |
|
|
|
|
|
self.memory.save_context({"input": query}, {"output": response}) |
|
|
|
return response |
|
|
|
|
|
pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY")) |
|
|
|
def upload_pdf(pdf_file): |
|
if not pdf_file: |
|
return "Upload a PDF file." |
|
file_path = pdf_file.name if hasattr(pdf_file, 'name') else pdf_file |
|
return "PDF processed successfully" if pdf_chatbot.load_and_process_pdf(file_path) else "Processing failed" |
|
|
|
def respond(message, history): |
|
try: |
|
bot_message = pdf_chatbot.chat(message) |
|
history.append((message, bot_message)) |
|
return "", history |
|
except Exception as e: |
|
return f"Error: {e}", history |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Advanced PDF Chatbot") |
|
with gr.Row(): |
|
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"]) |
|
upload_button = gr.Button("Process PDF") |
|
|
|
upload_status = gr.Textbox(label="Upload Status") |
|
upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status]) |
|
|
|
chatbot_interface = gr.Chatbot() |
|
msg = gr.Textbox(placeholder="Enter your query...") |
|
msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |