Update app.py
Browse files
app.py
CHANGED
@@ -9,38 +9,56 @@ from langchain.chat_models import ChatOpenAI
|
|
9 |
from langchain.chains import ConversationalRetrievalChain, LLMChain
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.prompts import PromptTemplate
|
|
|
12 |
|
13 |
-
from PyPDF2 import PdfReader # New import for PDF metadata extraction
|
14 |
-
|
15 |
-
# Configure logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
class QueryRefiner:
|
20 |
-
def __init__(self):
|
21 |
-
self.refinement_llm =
|
22 |
self.refinement_prompt = PromptTemplate(
|
23 |
input_variables=['query', 'context'],
|
24 |
-
template="""Refine
|
25 |
Original Query: {query}
|
26 |
Document Context: {context}
|
27 |
-
|
28 |
-
- Restructure for optimal comprehension
|
29 |
-
- Rewrite the question to the best context and structure of output desired
|
30 |
-
Refined Query:"""
|
31 |
-
)
|
32 |
-
self.refinement_chain = LLMChain(
|
33 |
-
llm=self.refinement_llm,
|
34 |
-
prompt=self.refinement_prompt
|
35 |
)
|
|
|
36 |
|
37 |
def refine_query(self, original_query, context_hints=''):
|
38 |
try:
|
39 |
-
|
40 |
'query': original_query,
|
41 |
-
'context': context_hints or "General
|
42 |
-
})
|
43 |
-
return refined_query.strip()
|
44 |
except Exception as e:
|
45 |
logger.error(f"Query refinement error: {e}")
|
46 |
return original_query
|
@@ -48,124 +66,108 @@ Refined Query:"""
|
|
48 |
class AdvancedPdfChatbot:
|
49 |
def __init__(self, openai_api_key):
|
50 |
os.environ["OPENAI_API_KEY"] = openai_api_key
|
|
|
|
|
51 |
self.embeddings = OpenAIEmbeddings()
|
52 |
-
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=
|
53 |
-
self.llm = ChatOpenAI(temperature=0, model_name='gpt-4o')
|
54 |
|
55 |
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
56 |
-
self.query_refiner = QueryRefiner()
|
|
|
|
|
57 |
self.db = None
|
58 |
self.chain = None
|
59 |
-
self.document_metadata = {}
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
input_variables=["context", "question"]
|
87 |
)
|
88 |
|
89 |
def load_and_process_pdf(self, pdf_path):
|
90 |
try:
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
loader = PyPDFLoader(pdf_path)
|
93 |
documents = loader.load()
|
94 |
texts = self.text_splitter.split_documents(documents)
|
95 |
-
self.db = FAISS.from_documents(texts, self.embeddings)
|
96 |
|
|
|
|
|
|
|
|
|
97 |
self.chain = ConversationalRetrievalChain.from_llm(
|
98 |
llm=self.llm,
|
99 |
retriever=self.db.as_retriever(search_kwargs={"k": 3}),
|
100 |
-
memory=self.memory
|
101 |
-
combine_docs_chain_kwargs={"prompt": self.qa_prompt}
|
102 |
)
|
103 |
|
104 |
-
|
105 |
-
document_context = self._extract_document_type()
|
106 |
-
logger.info(f"Extracted document context: {document_context}")
|
107 |
-
|
108 |
-
# Save document context in memory properly
|
109 |
-
self.memory.save_context({"input": "System"}, {"output": f"Document context: {document_context}"})
|
110 |
-
|
111 |
except Exception as e:
|
112 |
logger.error(f"PDF processing error: {e}")
|
113 |
-
|
114 |
|
115 |
def chat(self, query):
|
116 |
if not self.chain:
|
117 |
-
return "
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
122 |
result = self.chain({"question": refined_query})
|
|
|
123 |
return result['answer']
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
if not self.db:
|
128 |
-
return "No document loaded"
|
129 |
-
try:
|
130 |
-
first_doc = list(self.db.docstore._dict.values())[0].page_content[:1000]
|
131 |
-
headings = self._extract_headings(first_doc)
|
132 |
-
context_details = {
|
133 |
-
"Title": self.document_metadata.get('title', 'Unknown Title'),
|
134 |
-
"Author": self.document_metadata.get('author', 'Unknown Author'),
|
135 |
-
"First Snippet": first_doc[:300],
|
136 |
-
"Headings": headings
|
137 |
-
}
|
138 |
-
context_str = f"Title: {context_details['Title']}, Author: {context_details['Author']}, Headings: {context_details['Headings']}"
|
139 |
-
return context_str
|
140 |
-
except Exception as e:
|
141 |
-
logger.error(f"Error extracting document type: {e}")
|
142 |
-
return "Academic/technical document"
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
"title": reader.metadata.get("/Title", "Unknown Title"),
|
150 |
-
"author": reader.metadata.get("/Author", "Unknown Author"),
|
151 |
-
"creation_date": reader.metadata.get("/CreationDate", "Unknown Date")
|
152 |
-
}
|
153 |
-
logger.info(f"Extracted PDF metadata: {self.document_metadata}")
|
154 |
-
except Exception as e:
|
155 |
-
logger.error(f"Error extracting PDF metadata: {e}")
|
156 |
-
self.document_metadata = {}
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
return "No headings found"
|
166 |
|
167 |
-
def clear_memory(self):
|
168 |
-
self.memory.clear()
|
169 |
|
170 |
# Gradio Interface
|
171 |
pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY"))
|
|
|
9 |
from langchain.chains import ConversationalRetrievalChain, LLMChain
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
+
from PyPDF2 import PdfReader
|
13 |
|
|
|
|
|
|
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
+
class ResponseStructureSelector:
|
18 |
+
def __init__(self, llm):
|
19 |
+
self.llm = llm
|
20 |
+
self.structure_prompt = PromptTemplate(
|
21 |
+
input_variables=['context', 'query'],
|
22 |
+
template="""Analyze the context and query to determine the most appropriate response structure:
|
23 |
+
Context: {context}
|
24 |
+
Query: {query}
|
25 |
+
|
26 |
+
Select the optimal response format:
|
27 |
+
1. Markdown with bullet points and headlines
|
28 |
+
2. Concise paragraph with key insights
|
29 |
+
3. Numbered list with detailed explanations
|
30 |
+
4. Technical breakdown with subheadings
|
31 |
+
5. Quick summary with critical points
|
32 |
+
|
33 |
+
Choose the number (1-5) of the most suitable format:"""
|
34 |
+
)
|
35 |
+
self.structure_chain = LLMChain(llm=self.llm, prompt=self.structure_prompt)
|
36 |
+
|
37 |
+
def select_structure(self, context, query):
|
38 |
+
try:
|
39 |
+
structure_choice = self.structure_chain.run({'context': context, 'query': query})
|
40 |
+
return int(structure_choice.strip())
|
41 |
+
except:
|
42 |
+
return 1 # Default to Markdown structure
|
43 |
+
|
44 |
class QueryRefiner:
|
45 |
+
def __init__(self, llm):
|
46 |
+
self.refinement_llm = llm
|
47 |
self.refinement_prompt = PromptTemplate(
|
48 |
input_variables=['query', 'context'],
|
49 |
+
template="""Refine query for clarity and precision:
|
50 |
Original Query: {query}
|
51 |
Document Context: {context}
|
52 |
+
Refined, Focused Query:"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
)
|
54 |
+
self.refinement_chain = LLMChain(llm=self.refinement_llm, prompt=self.refinement_prompt)
|
55 |
|
56 |
def refine_query(self, original_query, context_hints=''):
|
57 |
try:
|
58 |
+
return self.refinement_chain.run({
|
59 |
'query': original_query,
|
60 |
+
'context': context_hints or "General document"
|
61 |
+
}).strip()
|
|
|
62 |
except Exception as e:
|
63 |
logger.error(f"Query refinement error: {e}")
|
64 |
return original_query
|
|
|
66 |
class AdvancedPdfChatbot:
|
67 |
def __init__(self, openai_api_key):
|
68 |
os.environ["OPENAI_API_KEY"] = openai_api_key
|
69 |
+
self.llm = ChatOpenAI(temperature=0, model_name='gpt-4o', max_tokens=1000)
|
70 |
+
|
71 |
self.embeddings = OpenAIEmbeddings()
|
72 |
+
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=100)
|
|
|
73 |
|
74 |
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
75 |
+
self.query_refiner = QueryRefiner(self.llm)
|
76 |
+
self.response_selector = ResponseStructureSelector(self.llm)
|
77 |
+
|
78 |
self.db = None
|
79 |
self.chain = None
|
80 |
+
self.document_metadata = {}
|
81 |
+
|
82 |
+
def _create_response_prompt(self, structure_choice):
|
83 |
+
structure_templates = {
|
84 |
+
1: """Markdown Response with Structured Insights:
|
85 |
+
## {title}
|
86 |
+
### Key Highlights
|
87 |
+
{content}
|
88 |
+
### Conclusion
|
89 |
+
{conclusion}""",
|
90 |
+
2: """{title}: {content}. Key Takeaway: {conclusion}""",
|
91 |
+
3: """Structured Breakdown:
|
92 |
+
1. {title}
|
93 |
+
- Main Point: {content}
|
94 |
+
2. Implications
|
95 |
+
- {conclusion}""",
|
96 |
+
4: """Technical Analysis
|
97 |
+
## {title}
|
98 |
+
### Core Concept
|
99 |
+
{content}
|
100 |
+
### Technical Implications
|
101 |
+
{conclusion}""",
|
102 |
+
5: """Concise Summary: {title}. Key Points: {content}. Conclusion: {conclusion}."""
|
103 |
+
}
|
104 |
+
return PromptTemplate(
|
105 |
+
template=structure_templates.get(structure_choice, structure_templates[1]),
|
106 |
+
input_variables=["title", "content", "conclusion"]
|
|
|
107 |
)
|
108 |
|
109 |
def load_and_process_pdf(self, pdf_path):
|
110 |
try:
|
111 |
+
# Extract PDF metadata
|
112 |
+
reader = PdfReader(pdf_path)
|
113 |
+
self.document_metadata = {
|
114 |
+
"title": reader.metadata.get("/Title", "Untitled Document"),
|
115 |
+
"author": reader.metadata.get("/Author", "Unknown")
|
116 |
+
}
|
117 |
+
|
118 |
+
# Load and process PDF
|
119 |
loader = PyPDFLoader(pdf_path)
|
120 |
documents = loader.load()
|
121 |
texts = self.text_splitter.split_documents(documents)
|
|
|
122 |
|
123 |
+
# Create vector store with fewer documents to improve performance
|
124 |
+
self.db = FAISS.from_documents(texts[:30], self.embeddings)
|
125 |
+
|
126 |
+
# Setup conversational chain
|
127 |
self.chain = ConversationalRetrievalChain.from_llm(
|
128 |
llm=self.llm,
|
129 |
retriever=self.db.as_retriever(search_kwargs={"k": 3}),
|
130 |
+
memory=self.memory
|
|
|
131 |
)
|
132 |
|
133 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
except Exception as e:
|
135 |
logger.error(f"PDF processing error: {e}")
|
136 |
+
return False
|
137 |
|
138 |
def chat(self, query):
|
139 |
if not self.chain:
|
140 |
+
return "Upload a PDF first."
|
141 |
+
|
142 |
+
# Refine query
|
143 |
+
context = f"Document: {self.document_metadata.get('title', 'Unknown')}"
|
144 |
+
refined_query = self.query_refiner.refine_query(query, context)
|
145 |
|
146 |
+
# Select response structure
|
147 |
+
structure_choice = self.response_selector.select_structure(context, refined_query)
|
148 |
+
|
149 |
+
# Perform retrieval and answer generation
|
150 |
result = self.chain({"question": refined_query})
|
151 |
+
|
152 |
return result['answer']
|
153 |
|
154 |
+
# Gradio Interface (remains mostly the same)
|
155 |
+
pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
def upload_pdf(pdf_file):
|
158 |
+
if not pdf_file:
|
159 |
+
return "Upload a PDF file."
|
160 |
+
file_path = pdf_file.name if hasattr(pdf_file, 'name') else pdf_file
|
161 |
+
return "PDF processed successfully" if pdf_chatbot.load_and_process_pdf(file_path) else "Processing failed"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
def respond(message, history):
|
164 |
+
try:
|
165 |
+
bot_message = pdf_chatbot.chat(message)
|
166 |
+
history.append((message, bot_message))
|
167 |
+
return "", history
|
168 |
+
except Exception as e:
|
169 |
+
return f"Error: {e}", history
|
|
|
170 |
|
|
|
|
|
171 |
|
172 |
# Gradio Interface
|
173 |
pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY"))
|