Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
|
|
3 |
from langchain.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain.embeddings import OpenAIEmbeddings
|
@@ -7,6 +8,8 @@ from langchain.vectorstores import FAISS
|
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain.chat_models import ChatOpenAI
|
9 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
|
10 |
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
|
@@ -103,10 +106,25 @@ NOTE : DESCRIBE/SUMMARY should always return the overall summary of the document
|
|
103 |
# Initialize the chatbot
|
104 |
pdf_chatbot = AdvancedPdfChatbot(openai_api_key)
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
def upload_pdf(pdf_file):
|
107 |
if pdf_file is None:
|
108 |
return "Please upload a PDF file."
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
110 |
pdf_chatbot.load_and_process_pdf(file_path)
|
111 |
return file_path
|
112 |
|
@@ -120,13 +138,16 @@ def clear_chatbot():
|
|
120 |
return []
|
121 |
|
122 |
def get_pdf_path():
|
123 |
-
# Call the method to return the current PDF path
|
124 |
return pdf_chatbot.get_pdf_path()
|
125 |
|
126 |
# Create the Gradio interface
|
127 |
with gr.Blocks() as demo:
|
128 |
gr.Markdown("# PDF Chatbot")
|
129 |
|
|
|
|
|
|
|
|
|
130 |
with gr.Row():
|
131 |
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
|
132 |
upload_button = gr.Button("Process PDF")
|
@@ -143,5 +164,7 @@ with gr.Blocks() as demo:
|
|
143 |
clear.click(clear_chatbot, outputs=[chatbot_interface])
|
144 |
path_button.click(get_pdf_path, outputs=[pdf_path_display])
|
145 |
|
|
|
|
|
146 |
if __name__ == "__main__":
|
147 |
demo.launch()
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
from huggingface_hub import HfApi, whoami
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.embeddings import OpenAIEmbeddings
|
|
|
8 |
from langchain.chains import ConversationalRetrievalChain
|
9 |
from langchain.chat_models import ChatOpenAI
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
+
from langchain.prompts import PromptTemplate
|
12 |
+
|
13 |
|
14 |
from langchain.prompts import PromptTemplate
|
15 |
|
|
|
106 |
# Initialize the chatbot
|
107 |
pdf_chatbot = AdvancedPdfChatbot(openai_api_key)
|
108 |
|
109 |
+
def get_user_folder():
|
110 |
+
try:
|
111 |
+
user_info = whoami()
|
112 |
+
username = user_info['name']
|
113 |
+
user_folder = f"user_data/{username}"
|
114 |
+
os.makedirs(user_folder, exist_ok=True)
|
115 |
+
return user_folder
|
116 |
+
except Exception:
|
117 |
+
return None
|
118 |
+
|
119 |
def upload_pdf(pdf_file):
|
120 |
if pdf_file is None:
|
121 |
return "Please upload a PDF file."
|
122 |
+
user_folder = get_user_folder()
|
123 |
+
if user_folder is None:
|
124 |
+
return "Please log in to upload a PDF."
|
125 |
+
file_path = os.path.join(user_folder, pdf_file.name)
|
126 |
+
with open(file_path, "wb") as f:
|
127 |
+
f.write(pdf_file.read())
|
128 |
pdf_chatbot.load_and_process_pdf(file_path)
|
129 |
return file_path
|
130 |
|
|
|
138 |
return []
|
139 |
|
140 |
def get_pdf_path():
|
|
|
141 |
return pdf_chatbot.get_pdf_path()
|
142 |
|
143 |
# Create the Gradio interface
|
144 |
with gr.Blocks() as demo:
|
145 |
gr.Markdown("# PDF Chatbot")
|
146 |
|
147 |
+
with gr.Row():
|
148 |
+
login_button = gr.LoginButton()
|
149 |
+
user_info = gr.Markdown()
|
150 |
+
|
151 |
with gr.Row():
|
152 |
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
|
153 |
upload_button = gr.Button("Process PDF")
|
|
|
164 |
clear.click(clear_chatbot, outputs=[chatbot_interface])
|
165 |
path_button.click(get_pdf_path, outputs=[pdf_path_display])
|
166 |
|
167 |
+
demo.load(lambda: gr.update(visible=True), outputs=[user_info], inputs=None)
|
168 |
+
|
169 |
if __name__ == "__main__":
|
170 |
demo.launch()
|