import os import gradio as gr from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chains.base import Chain from langchain.chat_models import ChatOpenAI from langchain.chains import LLMChain, ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain.prompts import PromptTemplate openai_api_key = os.environ.get("OPENAI_API_KEY") class AdvancedPdfChatbot: def __init__(self, openai_api_key): os.environ["OPENAI_API_KEY"] = openai_api_key self.embeddings = OpenAIEmbeddings() self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) self.llm = ChatOpenAI(temperature=0, model_name='gpt-4') # Corrected model name self.refinement_llm = ChatOpenAI(temperature=0, model_name='gpt-3.5-turbo') self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) self.overall_chain = None self.db = None self.refinement_prompt = PromptTemplate( input_variables=['query', 'chat_history'], template="""Given the user's query and the conversation history, refine the query to be more specific and detailed. If the query is too vague, make reasonable assumptions based on the conversation context. Output the refined query.""" ) self.template = """ You are a study partner assistant, students give you pdfs and you help them to answer their questions. Answer the question based on the most recent provided resources only. Give the most relevant answer. Context: {context} Question: {question} Answer: (Note: YOUR OUTPUT IS RENDERED IN PROPER PARAGRAPHS or BULLET POINTS when needed, modify the response formats as needed, only choose the formats based on the type of question asked) """ self.prompt = PromptTemplate(template=self.template, input_variables=["context", "question"]) def load_and_process_pdf(self, pdf_path): loader = PyPDFLoader(pdf_path) documents = loader.load() texts = self.text_splitter.split_documents(documents) self.db = FAISS.from_documents(texts, self.embeddings) self.setup_conversation_chain() def setup_conversation_chain(self): refinement_chain = LLMChain( llm=self.refinement_llm, prompt=self.refinement_prompt, output_key='refined_query' ) qa_chain = ConversationalRetrievalChain.from_llm( self.llm, retriever=self.db.as_retriever(), memory=self.memory, combine_docs_chain_kwargs={"prompt": self.prompt} ) self.overall_chain = self.CustomChain(refinement_chain=refinement_chain, qa_chain=qa_chain) class CustomChain(Chain): def __init__(self, refinement_chain, qa_chain): super().__init__() self.refinement_chain = refinement_chain self.qa_chain = qa_chain @property def input_keys(self): return ["query", "chat_history"] @property def output_keys(self): return ["answer"] def _call(self, inputs): query = inputs['query'] chat_history = inputs.get('chat_history', []) refined_query = self.refinement_chain.run(query=query, chat_history=chat_history) response = self.qa_chain({"question": refined_query, "chat_history": chat_history}) return {"answer": response['answer']} def chat(self, query): if not self.overall_chain: return "Please upload a PDF first." chat_history = self.memory.load_memory_variables({})['chat_history'] result = self.overall_chain({'query': query, 'chat_history': chat_history}) return result['answer'] def get_pdf_path(self): if self.db: return self.db.path else: return "No PDF uploaded yet." # Initialize the chatbot pdf_chatbot = AdvancedPdfChatbot(openai_api_key) def upload_pdf(pdf_file): if pdf_file is None: return "Please upload a PDF file." file_path = pdf_file.name pdf_chatbot.load_and_process_pdf(file_path) return file_path def respond(message, history): bot_message = pdf_chatbot.chat(message) history.append((message, bot_message)) return "", history def clear_chatbot(): pdf_chatbot.memory.clear() return [] def get_pdf_path(): return pdf_chatbot.get_pdf_path() # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown("# PDF Chatbot") with gr.Row(): pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"]) upload_button = gr.Button("Process PDF") upload_status = gr.Textbox(label="Upload Status") upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status]) path_button = gr.Button("Get PDF Path") pdf_path_display = gr.Textbox(label="Current PDF Path") chatbot_interface = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface]) clear.click(clear_chatbot, outputs=[chatbot_interface]) path_button.click(get_pdf_path, outputs=[pdf_path_display]) if __name__ == "__main__": demo.launch()