import os import gradio as gr import logging from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationalRetrievalChain, LLMChain from langchain.memory import ConversationBufferMemory from langchain.prompts import PromptTemplate from PyPDF2 import PdfReader logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class ResponseStructureSelector: def __init__(self, llm): self.llm = llm self.structure_prompt = PromptTemplate( input_variables=['context', 'query'], template="""Analyze the context and query to determine the most appropriate response structure: Context: {context} Query: {query} Select the optimal response format: 1. Markdown with bullet points and headlines 2. Concise paragraph with key insights 3. Numbered list with detailed explanations 4. Technical breakdown with subheadings 5. Quick summary with critical points Choose the number (1-5) of the most suitable format:""" ) self.structure_chain = LLMChain(llm=self.llm, prompt=self.structure_prompt) def select_structure(self, context, query): try: structure_choice = self.structure_chain.run({'context': context, 'query': query}) return int(structure_choice.strip()) except: return 1 # Default to Markdown structure class QueryRefiner: def __init__(self, llm): self.refinement_llm = llm self.refinement_prompt = PromptTemplate( input_variables=['query', 'context'], template="""Refine query for clarity and precision: Original Query: {query} Document Context: {context} Refined, Focused Query:""" ) self.refinement_chain = LLMChain(llm=self.refinement_llm, prompt=self.refinement_prompt) def refine_query(self, original_query, context_hints=''): try: return self.refinement_chain.run({ 'query': original_query, 'context': context_hints or "General document" }).strip() except Exception as e: logger.error(f"Query refinement error: {e}") return original_query class AdvancedPdfChatbot: def __init__(self, openai_api_key): os.environ["OPENAI_API_KEY"] = openai_api_key self.llm = ChatOpenAI(temperature=0, model_name='gpt-4o', max_tokens=1000) self.embeddings = OpenAIEmbeddings() self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=100) self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) self.query_refiner = QueryRefiner(self.llm) self.response_selector = ResponseStructureSelector(self.llm) self.db = None self.chain = None self.document_metadata = {} def _create_response_prompt(self, structure_choice): structure_templates = { 1: """Markdown Response with Structured Insights: ## {title} ### Key Highlights {content} ### Conclusion {conclusion}""", 2: """{title}: {content}. Key Takeaway: {conclusion}""", 3: """Structured Breakdown: 1. {title} - Main Point: {content} 2. Implications - {conclusion}""", 4: """Technical Analysis ## {title} ### Core Concept {content} ### Technical Implications {conclusion}""", 5: """Concise Summary: {title}. Key Points: {content}. Conclusion: {conclusion}.""" } return PromptTemplate( template=structure_templates.get(structure_choice, structure_templates[1]), input_variables=["title", "content", "conclusion"] ) def load_and_process_pdf(self, pdf_path): try: # Extract PDF metadata reader = PdfReader(pdf_path) self.document_metadata = { "title": reader.metadata.get("/Title", "Untitled Document"), "author": reader.metadata.get("/Author", "Unknown") } # Load and process PDF loader = PyPDFLoader(pdf_path) documents = loader.load() texts = self.text_splitter.split_documents(documents) # Create vector store with fewer documents to improve performance self.db = FAISS.from_documents(texts[:30], self.embeddings) # Setup conversational chain self.chain = ConversationalRetrievalChain.from_llm( llm=self.llm, retriever=self.db.as_retriever(search_kwargs={"k": 3}), memory=self.memory ) return True except Exception as e: logger.error(f"PDF processing error: {e}") return False def chat(self, query): if not self.chain: return "Upload a PDF first." # Refine query context = f"Document: {self.document_metadata.get('title', 'Unknown')}" refined_query = self.query_refiner.refine_query(query, context) # Select response structure structure_choice = self.response_selector.select_structure(context, refined_query) # Perform retrieval and answer generation result = self.chain({"question": refined_query}) return result['answer'] # Gradio Interface (remains mostly the same) pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY")) def upload_pdf(pdf_file): if not pdf_file: return "Upload a PDF file." file_path = pdf_file.name if hasattr(pdf_file, 'name') else pdf_file return "PDF processed successfully" if pdf_chatbot.load_and_process_pdf(file_path) else "Processing failed" def respond(message, history): try: bot_message = pdf_chatbot.chat(message) history.append((message, bot_message)) return "", history except Exception as e: return f"Error: {e}", history # Gradio Interface pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY")) def upload_pdf(pdf_file): if pdf_file is None: return "Please upload a PDF file." file_path = pdf_file.name if hasattr(pdf_file, 'name') else pdf_file try: pdf_chatbot.load_and_process_pdf(file_path) return f"PDF processed successfully: {file_path}" except Exception as e: logger.error(f"PDF processing error: {e}") return f"Error processing PDF: {str(e)}" def respond(message, history): if not message: return "", history try: bot_message = pdf_chatbot.chat(message) history.append((message, bot_message)) return "", history except Exception as e: logger.error(f"Chat response error: {e}") return f"Error: {str(e)}", history def clear_chatbot(): pdf_chatbot.clear_memory() return [] # Gradio UI with gr.Blocks() as demo: gr.Markdown("# Advanced PDF Chatbot") with gr.Row(): pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"]) upload_button = gr.Button("Process PDF") upload_status = gr.Textbox(label="Upload Status") upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status]) chatbot_interface = gr.Chatbot() msg = gr.Textbox(placeholder="Enter your query...") msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface]) clear_button = gr.Button("Clear Conversation") clear_button.click(clear_chatbot, outputs=[chatbot_interface]) if __name__ == "__main__": demo.launch()